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A Comparative Study on Similarity Measure Techniques for 

Cross-Project Defect Prediction
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ABSTRACT

Software defect prediction is helpful for allocating valuable project resources effectively for software quality assurance activities thanks 

to focusing on the identified fault-prone modules. If historical data collected within a company is sufficient, a Within-Project Defect 

Prediction (WPDP) can be utilized for accurate fault-prone module prediction. In case a company does not maintain historical data, it may 

be helpful to build a classifier towards predicting comprehensible fault prediction based on Cross-Project Defect Prediction (CPDP). Since 

CPDP employs different project data collected from other organization to build a classifier, the main obstacle to build an accurate classifier 

is that distributions between source and target projects are not similar. To address the problem, because it is crucial to identify effective 

similarity measure techniques to obtain high performance for CPDP, In this paper, we aim to identify them. We compare various similarity 

measure techniques. The effectiveness of similarity weights calculated by those similarity measure techniques are evaluated. The results 

are verified using the statistical significance test and the effect size test. The results show k-Nearest Neighbor (k-NN), LOcal Correlation 

Integral (LOCI), and Range methods are the top three performers. The experimental results show that predictive performances using the 

three methods are comparable to those of WPDP.
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요     약

소프트웨어 결함 예측은 결함이 자주 발생하는 모듈에 집중함으로써 소프트웨어 품질 보증 활동에 귀중한 프로젝트 리소스를 효과적으로 

할당하는 데 도움이 될 수 있다. 회사 내에서 수집 된 충분한 기록 데이터를 사용하여 정확한 결함 발생 가능성이 높은 모듈 예측에 대해 

WPDP (프로젝트 내 결함 예측)를 사용할 수 있다. 회사가 과거 데이터를 유지하지 못한 경우 CPDP (Cross-Project Defect Prediction) 메커니

즘을 기반으로 오류를 예측하는 분류기를 만드는 것이 도움이 될 수 있다. CPDP는 다른 조직에서 수집 한 다른 프로젝트 데이터를 사용하여 

분류기를 작성하기 때문에 정확한 분류기를 만드는데 가장 큰 장애물은 소스와 대상 프로젝트 간의 서로 다른 분포이다. 이 문제의 해결을 위

해 효과적인 유사도 측정 기술을 식별하는 것이 중요하므로, 본 논문에서는 다양한 유사도 측정 기술을 CPDP 모델에 적용하여 성능을 비교한

다. 유사도 가중치의 유효성을 평가하고, 통계적 유의성 검정 및 효과 크기 검정을 통해 결과를 검증한다. 실험 결과, k-Nearest Neighbor 

(k-NN), LOcal Correlation Integral (LOCI) 및 Range 방법이 유사도 측정 기술 중 상위 3 개에 속했고, 이들을 사용하는 CPDP 예측 성능이 

WPDP의 성능과 유사하였다.
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1. Introduction

The failures of software-intensive systems have led to 

human and financial losses. It is crucial to identify and 

eliminate software defects in that they may cause system 

failures. The needs of software quality assurance activities, 

i.e., testing and inspection, are enormously increasing but 

resources for them are mostly limited. Thus, they should be 

https://doi.org/10.3745/KTSDE.2018.7.6.205
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allocated effectively onto fault-prone modules. Software 

Defect Prediction (SDP) is a typical way to identify 

fault-prone modules. SDP has been implemented through 

classification models built by various machine learning 

mechanisms [1-6]. When sufficient local data are available, 

classification models can predict defects with a high degree 

of accuracy. In this Within-Project Defect Prediction 

(WPDP) case, the same distribution between training and 

test data is the main reason of high accuracy. In case that 

a company does not maintain local bug repositories, 

Cross-Project Defect Prediction (CPDP) is the most useful. 

It builds a predictor by using different project data. Different 

distributions between a source project and a target project 

are the main factors lowering performance under cross- 

project (CP) environments. To deal with this problem, 

previous CPDP studies [7-10] aimed at identifying effective 

distributional dataset properties (e.g., mean, median, 

minimum, maximum, and range) for calculating similarity 

between a source project and a target project. In other 

words, it is crucial to identify effective similarity measure 

techniques to obtain high prediction performance under CP 

environments.

Software defect datasets typically have much fewer 

defective examples compared with non-defective examples. 

Due to this class imbalance problem, specific learners could 

not produce high predictive performance. It is also necessary 

to deal with the class imbalance under CP environments.

Although distributional characteristics were employed to 

measure the similarity in existing CPDP studies, the 

comprehensive comparison of similarity measure techniques 

has not been studied. This study investigates two research 

questions:

• RQ1: Which similarity measure technique is more 

effective for cross-project defect prediction?

• RQ2: Can our CPDP approach make the prediction 

performance similar to within-project defect prediction?

In this study, we intend to identify similarity measure 

techniques which are effective for enhancing the performance 

of CPDP. We compare a variety of similarity measure 

techniques based on angle, distance, density, cluster, 

projection and statistical methods. The effectiveness of 

similarity weights calculated by those similarity measure 

techniques are evaluated with the classification model named 

HISNN (Hybrid Instance Selection using Nearest Neighbor) 

[11]. The experimental results are verified with the statistical 

significance test and the effect size test.

The remaining sections of this study are organized as 

follows. In section 2, we cover related work. In section 3, 

similarity measure techniques we used in experiments are 

explained. The setup for experiments is described in section 

4. In section 5, the experimental results are described. In 

section 6, threats to validity are explained. We summarize 

the study and discuss future work in the final section.

 

2. Related Work

2.1 Software Defect Prediction

Software defect prediction (SDP) studies how to identify 

fault-prone modules correctly over software bug database. 

Its main objective is to support decision-making for the 

effective allocation of limited resources, leading to software 

quality improvement and the cost reduction. Many 

researchers presented various Within-Project Defect 

Prediction (WPDP) methods [3, 4, 6] requiring sufficient 

historical data within an organization. A company has no 

local data when developing the first versions of the software 

system, i.e., pilot projects. In such cases, the company can 

apply Cross-Project Defect Prediction (CPDP) mechanism, 

utilizing defect data from other companies to construct a 

classifier.

Zimmermann et al. [7] presented that only 21 among 622 

CPDP cases were successful. They asserted that the 

identification of process and data characteristics is vital for 

dealing with different distributions between source and 

target projects. They also suggested CPDP issues be 

investigated by more researchers.

Ma et al. [9] proposed a Transfer Naive Bayes (TNB) for 

CPDP. As a way of measuring the similarity between source 

and target projects, range [12] was used. The similarity 

weights calculated are used for building the proposed model.

Ryu et al.[13] suggested a boosting method for CPDP 

considering both different distributions and class imbalance. 

As similarity measure, the range was also used for 

computing the similarity weights.

Turhan et al. [14] presented the relevancy filtering method 

based on the nearest neighbor. As a similarity measure, 

k-Nearest Neighbor (k-NN) was used to choose training 

examples similar to the test project.

According to previous CPDP studies, the identification of 

distributional properties between source and target projects 

played an important role in the success of CPDP. 

Consequently, it is important to identify effective similarity 

measure techniques for CPDP.

 

2.2 Class Imbalance Learning

Mostly on software defect dataset, defective examples are 

much fewer than non-defective examples. This issue is 

called the class imbalance problem [15]. The class imbalance 
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issue results in lowering the predictive performance of the 

classifiers [4]. Since misclassification of the defective class 

(minority class) is directly associated with software quality, 

it is important for the learner to produce high overall 

performance and high performance for the defective class 

without worsening the performance of the non-defective 

class (majority class) in the context of class imbalance.

Grbac and Goran [16] investigated how the different levels 

of imbalance over software defect datasets affect the 

predictive stability of classification models. They presented 

that the high imbalance ratio could lead to the unstable 

predictive performance.

Chawla et al. [17] proposed Synthetic Minority Over- 

sampling TEchnique (SMOTE) as a way to deal with the 

class imbalance problem. Instead of duplicating the existing 

examples, SMOTE creates synthetic minority class examples. 

Such synthetic examples cause the classification model to 

generate less specific decision regions. The prediction of the 

minority class can be better generalized because the 

classifier learns more general regions for minority class 

examples. In our study, we apply SMOTE to achieve high 

classification performance considering the context of class 

imbalance.

 

3. Similarity Measure Techniques

In order to compute the similarity between a source 

project and a target project, previous CPDP studies [7-10] 

utilized distributional dataset properties, e.g., the mean, 

median, minimum, maximum, and range. Since those 

summary statistics only represent the overall dataset 

characteristics, we try to identify more sophisticated 

approaches reflecting the precise characteristics of a target 

project.

In this section, we describe various similarity measure 

techniques based on angle, distance, density, cluster, 

projection, and statistical methods that can be applied into 

CPDP. Such categories are based on the work of Aggarwal 

[18]. The similarity measure technique is closely related to 

the outlier detection in that an outlier can be described as a 

data point distant from other data. Since outliers may indicate 

data points belonging to a distribution different from the rest 

of the dataset, the outlier detection can be connected to the 

identification of dissimilar instances between the source and 

the target projects under CP settings. Based on the target 

project, the source project instances identified as outliers can 

be considered dissimilar instances to the target project. The 

source project instances identified as non-outliers can be 

considered similar instances with the target project.

3.1 Angle-Based Method

3.1.1 Angle-Based Outlier Factor (ABOF) [19] evaluates 

the variance over the angles between the difference vectors 

of a data point to all pairs of data points. Interior data points 

are probable to have data points around them at different 

angles, whereas data points at the boundaries are probable 

to enclose the whole data within a smaller angle. If many other 

data points are placed in similar directions, a data point is 

an outlier. If many other data points are placed in varying 

directions, a data point is not outlier.

 

3.2 Distance-Based Methods

3.2.1 Range [12], the difference between the smallest and 

the largest values, is one way to compute the similarity 

between source and target projects [9, 13].

Given a sequence xi = {ai1, ai2, …, aik}, aij is the jth attribute 

of xi. The minimum and maximum values of jth attribute in 

test data are computed:

minj = min{a1j, a2j, …, amj}, maxj = max{a1j, a2j, …, amj}

where j = 1, 2, …, k, k is the number of attributes and m 

is the number of test data. The following two vectors have 

the minimum and maximum values of the attribute on test 

data. Min = {min1, min2, …, mink} and Max = {max1, max2, 

…, maxk}. Next, the similarity weight of each training 

example can be computed as follows:

 

Si =
1

( ) /
k

ij
j

h a k

  

                   
(1)

where 

h(aij) = ൜1 ݂݅ ݆݉݅݊ ൑ ݆ܽ݅ ൑ 0݆ݔܽ݉ 																			݁ݏ݅ݓݎ݄݁ݐ݋ , 

aij is the jth attribute of instance xi.

If Si = 1, the ith instance is a similar instance. This 

indicates that all the attributes of the ith instance are 

positioned within the range.

 

3.2.2 k-Nearest Neighbor (k-NN) [20] selects the 

nearest neighbors based on the distance function as similar 

instances. Mostly, instance based learners use Euclidean 

distance defined as:

 

Distance (X,Y) = ∑ ሺܺ݅ െ ܻ݅ሻ2݇݅ൌ1          (2)
 

where X and Y are the two instances, and Xi and Yi (i = 1..k) 

are their attributes.

Besides Euclidean distance, Hamming distance [21] is a 

useful way to calculate the distance. Particularly, [11, 22] 
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employed the minimum hamming distance to identify the 

similar instances. The minimum hamming distance 

(Min-Ham) indicates the minimum distance in Hamming 

space where there is a neighbor.

Suppose Min-Ham(xi) = ,

HammingDistance(xi, xj)  , xj X   (3)

 

For each data instance of the target project, the nearest 

neighbors in the source project are selected as the similar 

instances.

 

3.3 Density-Based Methods

3.3.1 Parzen-Window Density Estimation [23] is a 

method commonly placing a Gaussian distribution around 

each of the training instances. Given a data point x, 

Parzen-window estimates the Probability Density Function 

(PDF) P(x) from which the data point was derived.

When the difference between a source data instance and 

the mean of the target project data is larger than three times 

the standard deviation in the target data distribution, the 

source data instance is a dissimilar instance.

 

3.3.2 Local Outlier Factor (LOF) [24] computes the 

local deviation of a data point according to its neighbors for 

the detection of outliers. The local density of a data point is 

compared to the local densities of its neighbors. As such 

regions of similar density can be identified. If points having 

a considerably lower density than their neighbors, they are 

outliers.

The LOF values of the source and the target project data 

are computed. If source project instances have a significantly 

lower density than their neighbors composed of the target 

project data, they are dissimilar instances.

 

3.3.3 LOcal Correlation Integral (LOCI) [25] is an 

algorithm to find outliers based on Multi-granularity 

DEviation Factor (MDEF) handling local density variations 

in the feature space. 

The densities of each source project instance and its 

neighborhood composed of the target project data are used 

to compute the MDEF. If source project instances have a 

density similar to their neighbors composed of the target 

project data, they are similar instances.

 

3.4 Cluster-Based Method

3.4.1 k-means clustering [26] targets at partitioning n 

instances into k clusters where each instance falls into the 

cluster with the nearest mean. Based on the target project 

data, clusters are formed. If the source project data are 

positioned inside of the clusters, they are identified as similar 

instances.

 

3.5 Projection-Based Methods

3.5.1 Principal Component Analysis (PCA) [27] is an 

algorithm using an orthogonal linear transformation 

converting the data to principal components in a new 

coordinate system. The k-dimensional hyper-plane (k<d) 

minimizing the squared projection error is determined in 

PCA. A PCA on a target project is estimated and a source 

project is mapped onto the PCA subspace. The distance 

between the target project and the mapped source project is 

used to identify similar instances.

 

3.5.2 Self-Organizing Map (SOM) [28], a.k.a. Kohonen 

map is a method reducing the dimensions of data with 

self-organizing neural networks. Unit, a special type of data 

point is dynamic unlike the regular data points. Best 

Matching Unit (BMU) is defined as the unit closest to the 

input vector. SOM is trained with the target project data. 

Dissimilar instances in source project data lie relatively far 

away from the bulk of the target project data.

 

3.6 Statistical Models

3.6.1 Mixture Of Gaussians (MOG) model [29] is a 

kind of a mixture model that assumes subpopulations are 

present within an overall population. MOG parameters are 

estimated from the target project data using the 

Expectation-Maximization (EM) [29] algorithm. Data can be 

clustered with MOG. Dissimilar instances in source project 

data lie relatively far away from the clusters of the target 

project data.

 

4. Methodology

4.1 Hypotheses for Research Questions

1. RQ1: Which similarity measure technique is more 

effective for cross-project defect prediction?

We intend to check how differently similarity measure 

techniques affect the classification performance of CPDP. To 

this end, we compare various types of similarity measure 

techniques based on angle, distance, density, cluster, 

projection and statistical methods. As previous researches 

[7-10] pointed out, the major challenge of CPDP is poor 

classification performance owing to different distributions 

between source and target projects. To tackle this issue, 

previous studies used distributional characteristics as 
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similarity measure techniques. It is important to identify 

effective similarity measure techniques in the context of 

CPDP. To answer RQ1, the following hypotheses are 

formalized:

• H10 : The performance of different similarity measure 

techniques is the same.

• H1A : The performance of different similarity measure 

techniques is not the same.

 
2. RQ2: Can our CPDP approach make the prediction 

performance similar to within-project defect prediction?

It is commonly known that CPDP is inferior to WPDP 

using the same distributional data in terms of the 

classification performance [14]. In RQ2, we compare the 

HISNN approach using the three most effective similarity 

measure techniques with WPDP. Whereas the previous 

research [30] suggest a method using a mixed project data, 

combining CP and WP data, our proposed method uses only 

CP data. Since the collection of WP data requires additional 

effort and time, the benefits of our model is enormous if it 

is comparable to WPDP. Not only can it hasten the time of 

introducing SDP but also reduce the cost of introducing 

SDP. To answer RQ2, the following hypotheses are 

formalized:

• H20 : The proposed CPDP approach performs similarly 

to within-project defect prediction.

• H2A : The proposed CPDP approach performs differently 

from within-project defect prediction.

 

4.2 Benchmark Dataset

We employ the datasets from Jureczko and Spinellis [31] 

for experiments. They can be accessed in PROMISE 

repository [32]. They were extracted from open-source 

software (OSS) projects, proprietary projects and academic 

projects. In our experiments, 17 academic projects are 

merged into the project named student since their size is 

small. This merged version is also used in a previous CPDP 

study [30]. Totally 16 datasets are used in the experiments. 

Table 1 shows that the datasets encompass various software 

projects in terms of size and buggy ratio. The number of 

instances ranges from 26 to 904. The percentage of buggy 

modules ranges from 3.8 to 76.9. In Table 2, 17 academic 

projects that are merged into student project are described. 

In this study, the first versions of projects are only used 

since CPDP would be the most useful when there is no prior 

version available.

All the projects contain 20 features, i.e., static code and 

object-oriented metrics as shown in Table 3. The bug count 

information in the dataset is used as a class label. If an 

instance has any bug, it is marked as buggy module.

No Project
# 

Instances
# 

Buggy
% 

Buggy
Description

1 ant 125 20 16 OSS

2 camel 339 13 3.8 OSS

3 ivy 111 63 56.7 OSS

4 jedit 272 90 33.1 OSS

5 log4j 135 34 25.2 OSS

6 lucene 195 91 46.7 OSS

7 pbeans 26 20 76.9 OSS

8 poi 237 141 59.5 OSS

9 prop-6 660 66 10 Proprietary

10 student 904 217 24 Academic

11 synapse 157 16 10.2 OSS

12 systemdata 65 9 13.8 OSS

13 tomcat 858 77 9 OSS

14 velocity 196 147 75 OSS

15 xalan 723 110 15.2 OSS

16 xerces 162 77 47.5 OSS

Table 1. Datasets Used in the Experiments

 

Projects

arc, berek, ckjm, e-learning, intercafe, kalkulator, nieruchomosci, 

pdftranslator, redaktor, serapion, skarbonka, sklebagd, szybkafucha, 

termoproject, workflow, wspomaganiepi, zuzel

Table 2. Student Dataset

Features

weighted methods per class (WMC), depth of inheritance tree (DIT), 

number of children (NOC), coupling between object classes (CBO), 

response for a class (RFC), lack of cohesion in methods (LCOM), 

lack of cohesion in methods (LCOM3), number of public methods 

(NPM), data access metric (DAM), measure of aggregation (MOA), 

measure of functional abstraction (MFA), cohesion among methods 

of class (CAM), inheritance coupling (IC), coupling between methods 

(CBM), average method complexity (AMC), afferent couplings (Ca), 

efferent couplings (Ce), maximum McCabe’s cyclomatic complexity 

(Max(CC)), average McCabe’s cyclomatic  complexity (Avg(CC)), 

lines of code (LOC)

Table 3. Features for the Experiments

4.3 Comparative Framework

In this subsection, we describe the framework for 

comparing various similarity measure techniques. The 

comparative framework has two phases, i.e., preprocessing 

and Hybrid Instance Selection using Nearest-Neighbor 

(HISNN) [11]. Different similarity measure techniques are 

applied within the HISNN model.



210  정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제6호(2018. 6)

Fig. 1. The Comparative Framework

4.3.1 Preprocessing

In this phase, over-sampling with SMOTE [17] is 

performed. Software defect datasets mostly have much 

fewer defective instances compared with non-defective 

instances. Specific learners could not produce high predictive 

performance due to this class imbalance problem. SMOTE 

can be effective for adding up the number of the minority 

class instances in the training set. Thus, classification rules 

can be defined well and the predictive performance can be 

enhanced.

 

4.3.2 HISNN

Hybrid Instance Selection using Nearest-Neighbor 

(HISNN) [11] is a selective learning method based on the 

concept of LASER [22]. HISNN is a framework adapted for 

CPDP. It checks if each target project instance has the 

strong local knowledge on the basis of the source project. In 

1 DATA = {ant, camel, ivy, jedit, log4j, lucene, pbeans, poi, prop-6, student, synapse, systemdata, tomcat, velocity, 
xalan, xerces}

2 Sim_Measure = {abof, kmeans, knn(E), knn(H), loci, lof, mog, parzen, pca, range, som}

3 Local_Learner = {k-NN}

4 Global_Learner = {Naive Bayes}

5 for sim_measure ∈ Sim_Measure

6 for data ∈ DATA do

7 CPTrain = DATA – data

8 CPTrain' = Over-sample CPTrain' using SMOTE

9 CPTest = data

10 for i = 1 → 100 do

11 {Shuffle CPTest in each iteration}

12 CPTrain_wo_Outlier_1 = Remove outliers in CPTrain' based on CPTrain'

13 CPTrain_wo_Outlier_2 = Remove outliers in CPTrain' based on CPTest

14 CPTrain_Similar = Select similar instances in CPTrain' using sim_measure

15 CPTrain_Final = CPTrain_wo_Outlier_1 ∩ CPTrain_wo_Outlier_2 ∪ CPTrain_Similar

16 CPTrain_Final' = Select unique instances of CPTrain_Final

17 CPTrain_Final'' = Apply log filter to CPTrain_Final'

18 CPTest' = Apply log filter to CPTest

19 for each instance of CPTest

20 if the strong local knowledge of CPTrain' exists

21 Apply Local_Learner to the instance of CPTest using CPTrain'

22 else

23 Apply Global_Learner trained with CPTrain_Final'' to the instance of CPTest'

24 end if

25 end for

26 Report CP_PD(i), CP_PF(i), CP_Bal(i)

27 end for

28 end for

29 end for

Fig. 2. The Process of the Experiments



교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구  211

this case, the nearest neighbors and the nearest cluster [33] 

are considered together.

If the nearest neighbors or the nearest cluster of an 

instance have the same class label, it is considered as 

having the strong local knowledge. If the strong local 

knowledge is identified, the local instance selection strategy 

using a local learner (i.e., k-NN) is performed. In case of 

the weak local knowledge, the global instance selection 

strategy is used. HISNN aims to build a global learner (i.e., 

Naive Bayes) using source data without irrelevant 

instances. Naive Bayes is selected since it has shown high 

performance in predicting defects compared with other 

classifiers [4, 34]. Naive Bayes is built using the WEKA 

machine learning toolkit [35].

At this time, HISNN employs two methods, i.e., outlier 

detection and similarity weight computation to select the 

source project instances similar to the target project in 

accordance with CPDP. In the step of the outlier detection, 

Mahalanobis distance [36] is used to identify abnormal 

instances among the source project data. The Mahalanobis 

distance between a data point and a distribution, measures 

how away the point is from the mean. A data instance is 

considered as an outlier if it is more than 3 standard 

deviations away from the mean of the entire data 

distribution.

Particularly, HISNN detects outliers among source data 

instances from both the source project distribution and the 

target project distribution. The outliers based on the source 

project distribution can be counted as the extraneous 

instance in the source project. The outliers based on the 

target project distribution can be considered as extraneous 

instances dropping down the predictive performance of the 

target project. In the step of the similarity weight 

computation, source project instances similar to the target 

project are detected. To form final training data, the source 

instances with no outliers and source instances similar to 

test data are combined. These combined training data are 

utilized to train a Naive Bayes model to predict target 

instances that require the global knowledge.

In this study, in the step of the similarity weight 

computation, different similarity measure techniques are 

applied. Similarity measure techniques explained in section 

3 are used for experiments. knn(E) indicates k-Nearest 

Neighbor using Euclidean distance. As Turhan et al. [14] 

did, k is set as 10. knn(H) indicates k-Nearest Neighbor 

using the minimum Hamming distance. All the 

experimental settings except for the similarity weight 

computation are the same. For all the similarity measure 

techniques, instances selected in the local instance selection 

strategy are the same.

Fig. 2 shows the process of the comparison experiments. 

To set up the CP settings, we chose each dataset to be a test 

set and used the remaining datasets as a training set, The 

number of the minority class instances are increased by the 

SMOTE method. (lines 1-9)

Each experiment was iterated 100 times to reduce the 

random bias. By using Mahalanobis distance, outliers among 

source data instances are filtered out based on both the 

source project distribution and the target project distribution. 

The similar source instances are chosen with the similarity 

weight computed by the similarity measure technique. The 

final training data are formed by combining the source 

instances with no outliers and source project instances 

similar to the test project. Since such instances may not be 

unique, only unique instances are chosen for the next step. 

As previous studies [14, 37] recommended, log-filter (i.e., 

replacing N with ln(N)) is applied to training and test sets. 

It is employed to fulfill the normality assumption of Naive 

Bayes model. (lines 10-18)

Next, HISNN conducts the hybrid instance selection based 

on the local knowledge. Each target project instance is 

examined if there exists the strong local knowledge based on 

the source project data. The class label of the target project 

instance is found out by using the k-NN model. If there 

exists no strong local knowledge, the Naive Bayes model 

trained with the source project instances similar to the target 

project is applied to test the target project instance. The 

source data instances similar to the target data are only used 

to build Naive Bayes model. Log filter is only used when 

Naive Bayes model is applied. Details of HISNN can be 

found in [11]. (lines 19-25) 

The performance results of CPDP model are reported by 

using Probability of Detection (PD), Probability of False 

alarm (PF), and Balance (Bal). (lines 26)

In RQ1, we aim to find more effective similarity measure 

techniques for CPDP. To this end, we compare the predictive 

results of HISNN using 11 similarity measure methods over 

16 datasets under cross-project settings.

In RQ2, we check if HISNN using the three most effective 

similarity measure techniques found in RQ1 can provide 

comparable performance in comparison with WPDP. We 

compare our approach with Naive Bayes under WP settings. 

As a baseline, we also include the relevancy filter proposed 

by Turhan et al. [14] and Naive Bayes under CP environments. 

The relevancy filter is chosen since it is widely used [14, 30, 

38]. For WPDP, we split training and test data randomly by 
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a 50:50 ratio. This method is generally used in the literature 

[10, 39]. We applied the log filter to all the cases.

4.4 Performance Evaluation

Software defect datasets typically have the class 

imbalance issue. To measure the classifier built on the 

imbalanced data set, multiple performance measures are 

recommended [40]. The performance on the buggy class is 

generally evaluated with Probability of Detection (PD) and 

Probability of False alarm (PF). Balance can evaluate the 

overall performance indicating how well a classifier can 

balance predictive performance between buggy and clean 

classes.

 

 
Predicted class

Buggy Clean

Actual 

class

Buggy TP (True Positive) FN (False Negative)

Clean FP (False Positive) TN (True Negative)

Table 4. Confusion Matrix

 

As shown in Table 4, we can count the number of 

correct/incorrect classification with confusion matrix. True 

Positive (TP) is the number of buggy instances predicted 

correctly as buggy. True Negative (TN) is the number of 

clean instances predicted correctly as clean. False Positive 

(FP) is the number of clean instances predicted incorrectly 

as buggy. False Negative (FN) is the number of buggy 

instances predicted incorrectly as clean. Using such counts, 

we can derive the performance measures as follows:

• PD ൌ ܶܲܶܲ ൅ ܰܨ
• PF ൌ ܲܨܲܨ ൅ ܶܰ
• Balance ൌ 1 െ 0െܲܨ 2൅ 1െܲܦ 22
PD, a.k.a. recall, means the ratio of correct instances 

retrieved. PF, a.k.a. the false positive rate, means the ratio 

of clean instances misclassified within the clean class. Unlike 

PD, PF is better when its value is lower. Balance is defined 

as a Euclidean distance between the ideal (1, 0) point and the 

real (PD, PF) point. A classifier producing high Balance 

values is desired in that it can take a good balance of the 

performance between the buggy and the clean classes.

On our experiments, we have multiple similarity measure 

techniques over multiple data sets. For this case, the Friedman 

test [41, 42] with the post-hoc tests are recommended by 

Demsar [43]. If the null hypothesis meaning that the 

performance of the comparisons is similar is rejected by the 

Friedman test, this indicates that at least the performance 

between two learners are significantly different from each 

other. Then, we can proceed to find the groups of data that 

No Target abof kmeans knn(E) knn(H) loci lof mog parzen pca range som

1 ant 0.85 0.85 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85

2 camel 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615

3 ivy 0.571 0.555 0.492 0.412 0.507 0.507 0.555 0.571 0.539 0.428 0.571

4 jedit 0.788 0.788 0.777 0.766 0.777 0.788 0.788 0.788 0.788 0.777 0.788

5 log4j 0.764 0.764 0.735 0.647 0.647 0.735 0.764 0.764 0.764 0.764 0.764

6 lucene 0.593 0.593 0.593 0.582 0.56 0.593 0.593 0.593 0.593 0.582 0.593

7 pbeans 0.5 0.5 0.55 0.1 0.3 0.5 0.5 0.5 0.4 0.45 0.45

8 poi 0.666 0.673 0.687 0.702 0.645 0.659 0.68 0.68 0.666 0.673 0.673

9 prop-6 0.742 0.742 0.712 0.742 0.636 0.651 0.742 0.742 0.742 0.712 0.742

10 student 0.626 0.658 0.672 0.654 0.635 0.663 0.654 0.663 0.645 0.654 0.658

11 synapse 0.75 0.75 0.687 0.75 0.687 0.687 0.75 0.75 0.75 0.687 0.75

12 systemdata 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666

13 tomcat 0.662 0.701 0.662 0.48 0.493 0.48 0.701 0.714 0.688 0.142 0.701

14 velocity 0.38 0.387 0.367 0.401 0.34 0.353 0.38 0.38 0.353 0.36 0.387

15 xalan 0.818 0.818 0.809 0.827 0.809 0.809 0.818 0.827 0.809 0.809 0.818

16 xerces 0.337 0.337 0.35 0.324 0.324 0.324 0.337 0.35 0.337 0.324 0.337

 Median 0.664 0.6695 0.669 0.6505 0.6355 0.655 0.673 0.673 0.666 0.66 0.6695

Table 5. The Median PD Performance of HISNN using 11 Similarity Measure Techniques
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differ via a post-hoc test. As the post-hoc test, various test 

methods including Tukey's Honestly Significant Difference 

test [44], Nemenyi test [45], and Bonferroni-Dunn test [46] 

can be employed. We carried out Tukey's HSD test for our 

experiments.

We carry out Wilcoxon rank-sum test [47] at a confidence 

level of 95% to evaluate the performance between the two 

distributions. This non-parametric test is recommended 

because it does not make any assumption on the data 

distribution unlike a Student's t-test [48].

We perform the effect size test called A-statistics [49] to 

evaluate the magnitude of the improvement. Arcuri and 

Briand [48] indicated this test is appropriate for evaluating 

randomized algorithms in software engineering. A-statistics 

means the probability of algorithm X providing higher M 

values in comparison with another algorithm Y, where M is 

a performance measure. For instance, A = 0.64 indicates that 

X provides higher results 64% of the time. Based on the 

guidelines [49], X is better(or worse) than Y if A > 0.64, 

meaning a medium size difference. If A <= 0.64, X is not 

better (or worse) than Y.

 

4.5 Implementation of Similarity Measure Technique

As the similarity measure techniques in the experiments, 

we use outlier detection algorithms implemented in Data 

Description Toolbox (DDtools) [50]. DDtools is the one-class 

classification method dealing with a two-class classification 

problem, having the target and the outlier class. The target 

class is assumed to be sampled well. The outlier class is 

sampled very sparsely. For executing outlier detection 

algorithms, we use the default option FRACREJ = 0.1. 

FRACREJ indicates the fraction of targets rejected, i.e. the 

fraction of errors on the target class.

 

5. Result

We discuss the experimental results based on RQ1 and 

RQ2. For RQ1, we aim at identifying more effective 

similarity measure techniques under CP settings. For RQ2, 

we check if our CPDP model employing the selected 

similarity measure techniques is useful by comparing its 

performance with that of the WPDP model.

 

5.1 Experiment 1: RQ1

We show the performance results of HISNN using 11 

similarity measure techniques over 16 datasets. Table 5 

shows the median PD performance. knn(E) indicates 

k-nearest neighbor method using the Euclidean distance. 

knn(H) indicates k-nearest neighbor method using the 

minimum Hamming distance. In case of the median PD 

values, mog and parzen show the best performance (0.673) 

compared to other methods. loci is the worst performer 

showing 0.6355. The other methods mostly show about 0.67.

In Table 6, the median PF values are shown. In this case,  

No Target abof kmeans knn(E) knn(H) loci lof mog parzen pca range som

1 ant 0.571 0.542 0.428 0.419 0.447 0.542 0.552 0.552 0.542 0.542 0.552

2 camel 0.45 0.46 0.487 0.478 0.42 0.429 0.466 0.466 0.457 0.447 0.469

3 ivy 0.333 0.333 0.208 0.187 0.27 0.312 0.354 0.333 0.333 0.166 0.333

4 jedit 0.505 0.505 0.483 0.489 0.478 0.505 0.505 0.505 0.505 0.478 0.505

5 log4j 0.346 0.366 0.396 0.415 0.247 0.336 0.376 0.376 0.346 0.316 0.356

6 lucene 0.461 0.461 0.442 0.509 0.375 0.451 0.48 0.48 0.461 0.403 0.461

7 pbeans 0 0 0.166 0.166 0 0 0.166 0 0 0 0

8 poi 0.416 0.427 0.427 0.427 0.406 0.416 0.427 0.427 0.416 0.416 0.427

9 prop-6 0.622 0.622 0.574 0.607 0.469 0.486 0.622 0.651 0.614 0.515 0.622

10 student 0.43 0.458 0.468 0.508 0.425 0.448 0.446 0.461 0.435 0.432 0.458

11 synapse 0.624 0.631 0.574 0.56 0.581 0.609 0.638 0.638 0.631 0.617 0.631

12 systemdata 0.446 0.446 0.41 0.446 0.392 0.446 0.517 0.517 0.446 0.392 0.446

13 tomcat 0.349 0.37 0.357 0.302 0.18 0.249 0.366 0.375 0.368 0.24 0.37

14 velocity 0.428 0.448 0.428 0.51 0.428 0.428 0.448 0.448 0.428 0.428 0.428

15 xalan 0.512 0.535 0.5 0.53 0.481 0.495 0.512 0.535 0.508 0.5 0.515

16 xerces 0.482 0.482 0.482 0.47 0.494 0.494 0.482 0.494 0.482 0.494 0.482

 Median 0.448 0.459 0.435 0.474 0.4225 0.447 0.473 0.473 0.4515 0.43 0.4595

Table 6. The Median PF Performance of HISNN using 11 Similarity Measure Techniques
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No Target abof kmeans knn(E) knn(H) loci lof mog parzen pca range som

1 ant 0.582 0.601 0.665 0.671 0.666 0.601 0.595 0.595 0.601 0.601 0.595

2 camel 0.58 0.575 0.56 0.565 0.597 0.592 0.572 0.572 0.577 0.582 0.57

3 ivy 0.616 0.607 0.611 0.564 0.602 0.587 0.598 0.616 0.598 0.579 0.616

4 jedit 0.612 0.612 0.623 0.616 0.627 0.612 0.612 0.612 0.612 0.627 0.612

5 log4j 0.703 0.692 0.663 0.614 0.695 0.697 0.686 0.686 0.703 0.72 0.697

6 lucene 0.565 0.565 0.575 0.534 0.591 0.57 0.554 0.554 0.565 0.589 0.565

7 pbeans 0.646 0.646 0.66 0.352 0.505 0.646 0.627 0.646 0.575 0.611 0.611

8 poi 0.622 0.619 0.625 0.631 0.618 0.619 0.623 0.623 0.622 0.625 0.619

9 prop-6 0.523 0.523 0.545 0.533 0.579 0.576 0.523 0.504 0.528 0.582 0.523

10 student 0.596 0.595 0.595 0.565 0.604 0.603 0.6 0.596 0.602 0.608 0.595

11 synapse 0.524 0.519 0.537 0.566 0.533 0.515 0.515 0.515 0.519 0.51 0.519

12 systemdata 0.606 0.606 0.625 0.606 0.635 0.606 0.564 0.564 0.606 0.635 0.606

13 tomcat 0.656 0.663 0.652 0.575 0.619 0.592 0.665 0.666 0.658 0.37 0.663

14 velocity 0.467 0.463 0.459 0.443 0.443 0.451 0.459 0.459 0.451 0.455 0.471

15 xalan 0.615 0.6 0.621 0.605 0.633 0.624 0.615 0.602 0.615 0.621 0.613

16 xerces 0.42 0.42 0.428 0.417 0.408 0.408 0.42 0.423 0.42 0.408 0.42

 Median 0.601 0.6005 0.616 0.5655 0.603 0.5965 0.5965 0.5955 0.5995 0.595 0.6005

Table 7. The Median Balance Performance of HISNN using 11 Similarity Measure Techniques

Fig. 3. Tukey’s Critical-Difference Diagram for PD, 1-PF and Balance

loci shows the best PF performance (0.4225) by comparison 

with other methods. Most of the other methods show about 

0.45.

In Table 7, the median Balance values are shown. With 

respect to Balance, knn(E) produces the best result (0.616) 

in comparison with other methods. The other methods 

mostly produce about 0.6.

For PD and 1-PF, Friedman test indicated that the  

performance difference among 11 similarity measure 

techniques are statistically significant, showing p-value < 

0.05. Thus, H10 is rejected. However, in terms of Balance, the 

difference in performance scores among 11 similarity 

measure methods were not statistically significant, showing 

p-value > 0.05. 

Fig. 3 shows the Tukey's HSD test results for HISNN 

using 11 similarity measure techniques when PD, 1-PF, and 

Balance are used as the performance measure. In Fig. 3, each 

group mean is represented by a symbol and 95% confidence 

interval is shown as a line around the symbol. If the intervals 

of two groups are disjoint, they are different significantly. If 

their intervals overlap, they are not different significantly.

Fig. 3 shows that the performance of PD, 1-PF and 
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No Target
Data

CP Naive Bayes CP Naive Bayes + NN WP Naive Bayes HISNN(knn(E)) HISNN(loci) HISNN(range)

PD PF B PD PF B PD PF B PD PF B PD PF B PD PF B

1 ant 1 0.666 0.528 0.9 0.495 0.642 0.85 0.471 0.639 0.8 0.428 0.665 0.85 0.447 0.666 0.85 0.542 0.601

2 camel 0.692 0.585 0.532 0.692 0.653 0.489 0.428 0.352 0.563 0.615 0.487 0.56 0.615 0.42 0.597 0.615 0.447 0.582

3 ivy 0.746 0.5 0.603 0.571 0.25 0.649 0.718 0.416 0.618 0.492 0.208 0.611 0.507 0.27 0.602 0.428 0.166 0.579

4 jedit 0.933 0.648 0.539 0.933 0.532 0.62 0.888 0.428 0.68 0.777 0.483 0.623 0.777 0.478 0.627 0.777 0.478 0.627

5 log4j 0.882 0.405 0.701 0.941 0.722 0.487 0.882 0.539 0.593 0.735 0.396 0.663 0.647 0.247 0.695 0.764 0.316 0.72

6 lucene 0.714 0.528 0.574 0.67 0.394 0.636 0.76 0.442 0.633 0.593 0.442 0.575 0.56 0.375 0.591 0.582 0.403 0.589

7 pbeans 0.55 0.166 0.66 0.5 0.333 0.575 0.8 0.666 0.507 0.55 0.166 0.66 0.3 0 0.505 0.45 0 0.611

8 poi 0.843 0.593 0.565 0.865 0.656 0.526 0.873 0.687 0.511 0.687 0.427 0.625 0.645 0.406 0.618 0.673 0.416 0.625

9 prop-6 0.893 0.67 0.52 0.712 0.518 0.58 0.59 0.316 0.617 0.712 0.574 0.545 0.636 0.469 0.579 0.712 0.515 0.582

10 student 0.617 0.359 0.628 0.732 0.48 0.611 0.88 0.655 0.529 0.672 0.468 0.595 0.635 0.425 0.604 0.654 0.432 0.608

11 synapse 0.937 0.73 0.481 0.937 0.702 0.501 0.75 0.394 0.643 0.687 0.574 0.537 0.687 0.581 0.533 0.687 0.617 0.51

12 systemdata 0.777 0.553 0.578 0.777 0.428 0.658 0.4 0.25 0.54 0.666 0.41 0.625 0.666 0.392 0.635 0.666 0.392 0.635

13 tomcat 0.792 0.389 0.687 0.246 0.186 0.451 0.846 0.37 0.712 0.662 0.357 0.652 0.493 0.18 0.619 0.142 0.24 0.37

14 velocity 0.578 0.612 0.474 0.7 0.653 0.492 0.689 0.44 0.596 0.367 0.428 0.459 0.34 0.428 0.443 0.36 0.428 0.455

15 xalan 0.9 0.61 0.562 0.909 0.654 0.532 0.854 0.462 0.657 0.809 0.5 0.621 0.809 0.481 0.633 0.809 0.5 0.621

16 xerces 0.415 0.588 0.413 0.441 0.635 0.401 0.615 0.232 0.669 0.35 0.482 0.428 0.324 0.494 0.408 0.324 0.494 0.408

 Median 0.784 0.586 0.5635 0.722 0.525 0.5535 0.780 0.434 0.6175 0.669 0.435 0.616 0.6355 0.4225 0.603 0.66 0.43 0.595

Table 8. The Median PD, PF and Balance Performance of Classifiers

Balance is better when its average rank is higher. The 

performance results are sorted by the descending order of 

the average rank.

In terms of PD, parzen shows the best performance. 

Tukey's HSD tests showed that parzen scored statistically 

significantly higher than knn(H), lof, range and loci. With 

regard to 1-PF, loci shows the best performance. Tukey's 

HSD tests showed that loci scored statistically significantly 

better than knn(H), som, kmeans, mog and parzen. In regard 

to Balance, knn(E) performs the highest. Tukey's HSD tests 

showed that there is no similarity measure technique 

statistically better than the others regarding Balance.

Based on Balance, the three highest methods are knn(E), 

loci and range, indicating that they achieve the more balanced 

prediction performance between PD and PF. Thus, they are 

selected for further investigation. In the next subsection, 

knn(E), loci and range are compared with WPDP for RQ2.

5.2 Experiment 2: RQ2

In this subsection, we compared HISNN using knn(E), loci 

and range with Naive Bayes using a Nearest Neighbor filter 

(CP Naive Bayes + NN) and Naive Bayes under CP settings 

(CP Naive Bayes) as well as Naive Bayes under WP settings 

(WP Naive Bayes). Although the main purpose of RQ2 is to 

compare HISNN with WPDP, we additionally added CP Naive 

Bayes and CP Naive Bayes + NN as baselines for comparison.

In Table 8, the median PD, PF and Balance scores of 

classification models are presented. The best result of each 

case is marked in boldface. In Fig. 4, median PD and PF 

results of six classifiers over 16 datasets is illustrated in a 

scatter plot. Since the ideal point is at PD=1 and PF=0, a 

better classifier produces more data points at the bottom 

right of the figure.

CP Naive Bayes showed the worst PF value (0.586) 

whereas it showed the best PD value (0.784).Thus, more 

points are located at the top right of the areas. In case of 

high PF rates, it takes much time and effort for practitioners 

to explore false alarms. In cases of ant, jedit, prop-6, 

synapse, velocity, and xalan, PF values show more than 0.6. 

Such high PF rates are not acceptable to most software 

practitioners.

Turhan et al. [14] proposed the relevancy filter to mitigate 

high PF rates. It lowers from 0.586 to 0.525 based on the 

median PF values. Nevertheless, there are still cases showing 

high PF rates (camel, log4j, poi, synapse, velocity, xalan, and 

xerces). In Fig. 4, it also produces more data points at the 

top right of the figure.

In WPDP, since both training and test sets have the same 

data distribution, its prediction performance is expected to be 

the best. WP Naive Bayes produces high PD (0.780) and low 

PF (0.434). Regarding Balance, it also provides higher result 

(0.6175) compared to CP Naive Bayes (0.5635) and the 
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Fig. 4. Scatter Plot of Median PD and PF Scores of four 

Classifiers over 16 Datasets
Fig. 5. Mini Boxplots of Median PD, PF and Balance Scores 

of Six Classifiers over 16 Datasets

relevancy filter (0.5535). However, there are cases producing 

high PF values in cases of pbeans (0.666), poi (0.687), and 

student (0.655). 

HISNN using knn(E), loci and range produces the low PF 

value (0.435, 0.4225, 0.43) in comparison with the other 

classifiers. Compared to CP Naive Bayes and the relevance 

filter, they show better Balance and PF performance.

In Experiment 1, Tukey's HSD test was performed. 

However, it does not consider the actual performance, but only 

the relative ranking [6]. In this subsection, a method to find 

a statistically significant ranking of the approaches is 

described.

Based on [5, 6], the variability of the models across 

multiple runs can be evaluated. The mini box plot shows the 

first, second and third quartile of each experimental case. 

The models are sorted by their median values. A circle 

means the median and a bar represents the first-third 

quartile range. The smallest and the largest values are not 

shown. The 100 points for each target project are merged as 

each performance measure because we iterate each 

experiment 100 times. For 16 projects, 1600 points are 

utilized to compute the first, second and third quartile.

In Fig. 5, median PD, PF and Balance values of six 

classifiers sorted by median are illustrated by mini boxplots. 

HISNN using knn(E), loci and range reduces PF rates 

effectively whereas it shows the lowest PD rates. They 

show higher Balance values than CP NB and the relevancy 

filter but lower than WP NB.

In Table 9, HISNN using knn(E) is compared to other 

models according to the Wilcoxon rank-sum test at a 5% 

significance level and the A-statistics effect size test. We 

mark the significantly better performance of HISNN in 

boldface. The significant difference indicates p-value < 0.05 

and A-statistics > 0.64 for PD and Balance (A-statistics < 

0.36 for PF). The boldface indicates the significantly better 

performance of HISNN with p-value < 0.05 and A-statistics 

> 0.64 for PD and Balance (A-statistics < 0.36 for PF).

A practically useful classifier should produce high PD and 

low PF rates individually as well as high overall performance. 

In Table 9, the Wilcoxon rank-sum test showed that the 

difference in Balance scores between HISNN (knn(E)) and 

other classifiers under CP settings are statistically significant 

with p-value << 0.001. Regarding Balance, the effect size 

values against CP NB and the relevancy filter are 0.61 (i.e., 

the small effect) and 0.65 (i.e., the medium effect) 

respectively. We check if HISNN is similar to WPDP to 

answer RQ2. In Table 9, the Wilcoxon rank-sum test 

showed that the difference in Balance rates between HISNN  

HISNN (knn(E)) vs. CP NB CP NB + NN WP NB

PD
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.25 0.32 0.28

PF
p-value << 0.001 << 0.001 0.67

A-statistic 0.23 0.30 0.50

Balance
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.61 0.65 0.43

Table 9. The Comparison of HISNN(knn(E)) with other Classifiers
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HISNN (loci) vs. CP NB CP NB + NN WP NB

PD
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.22 0.27 0.25

PF
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.19 0.24 0.42

Balance
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.61 0.60 0.41

Table 10. The Comparison of HISNN(loci) with other Classifiers

HISNN (range) vs. CP NB CP NB + NN WP NB

PD
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.24 0.30 0.27

PF
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.23 0.27 0.46

Balance
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.57 0.55 0.38

Table 11. The Comparison of HISNN(range) with other Classifiers

and Naive Bayes under WP settings are statistically 

significant with p-value << 0.001. Although HISNN is worse 

than WPDP in terms of the Wilcoxon rank-sum test, with 

respect to the effect size test for Balance, the effect size was 

0.43 meaning a small effect. Thus, we reject H20. The 

comparison results using HISNN(loci) and HISNN(range) 

are shown in Table 10 and 11. The results of the statistical 

test and the effect size test are similar to that of HISNN 

(knn(E)). The experimental results represent that HISNN 

can be practically used under CP settings.

6. Threats to Validity

6.1 Threats to Construct Validity

In HISNN, target instances to use local knowledge are 

separated from target instances to use global knowledge. 

Then, the similarity measure techniques only apply to 

instances to use global knowledge. Without such separation, 

the similarity measure techniques using all the instances 

may perform better / worse for CPDP.

We used DD tools with the default option, i.e., FRACREJ 

= 0.1. Because we obtained the results using the single 

choice of the value, different conclusions may be reached 

when using other values.

 

6.2 Threats to External Validity

For our experiments, public datasets from the PROMISE 

repository are employed. Because other software projects 

have different distributional properties, our findings may not 

be generalizable to them. Nevertheless, totally 16 datasets 

encompass various software projects in terms of the type, 

size and defect ratio. By doing so, we mitigate threats to 

external validity as possible.

 

6.3 Threats to Conclusion Validity

For RQ1, Friedman test and Tukey's HSD test were 

performed. As Demsar [43] indicated, the Friedman statistic 

is considered as meaningful when the number of learners is 

bigger than 5 and the number of data sets is bigger than 10. 

This guideline is satisfied in that we have 11 learners built 

with different similarity measure techniques over 16 

datasets.

For RQ2, we performed Wilcoxon rank-sum test and the 

A-statistics effect size test. The statistical significance 

difference between two classifiers was checked by Wilcoxon 

rank-sum test. We evaluated the magnitude of the 

improvement using A-statistics effect size test. Two methods 

have been accepted generally in software engineering [48].

 

7. Conclusion

Software Defect Prediction (SDP) has been widely studied 

as a mechanism to identify defective modules. When 

historical defect data are sufficiently available within a 

company, classifiers can predict defects with a high degree 

of accuracy. Within-Project Defect Prediction (WPDP) can 

produce high performance owing to the same distributional 

properties between training and test data. Cross-Project 
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Defect Prediction (CPDP) is the most helpful in case that 

historical bug data are unavailable. Since a classifier is built 

with different project data in CPDP, the main reason 

lowering the predictive performance under cross-project 

(CP) environments is different distributions between a 

source project and a target project. To tackle the problem, 

it is crucial to employ effective similarity measure techniques 

identifying source project instances similar to the target 

project.

In this study, we aim to identify similarity measure 

techniques which are effective for enhancing the prediction 

performance of CPDP. We compare 11 similarity measure 

techniques based on angle, distance, density, cluster, 

projection and statistical methods over 16 datasets. The 

effectiveness of similarity weights calculated by those 

similarity measure techniques are evaluated with the classifier 

named HISNN (Hybrid Instance Selection using Nearest 

Neighbor). Then we investigated if HISNN is similar to 

WPDP when it is used with the appropriate similarity 

measure technique. The experimental results are verified by 

using the statistical significance test and the effect size test. 

We identified the effective similarity measure techniques 

under CP settings. In addition, without historical data, we 

showed that CPDP can be comparable to WPDP if appropriate 

similarity measure is employed.

We showed various similarity measure techniques 

associated with the HISNN model that can be employed for 

CPDP. The PF rates were effectively decreased but the PD 

rates became lower as well. In future studies, we will 

investigate how to remedy this shortcoming. In particular, the 

relationships between each similarity measure technique and 

three performance measures (i.e., PD, PF and Balance) need 

to be investigated in depth.
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