
교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 205

A Comparative Study on Similarity Measure Techniques for

Cross-Project Defect Prediction

Duksan Ryu†⋅Jongmoon Baik††

ABSTRACT

Software defect prediction is helpful for allocating valuable project resources effectively for software quality assurance activities thanks

to focusing on the identified fault-prone modules. If historical data collected within a company is sufficient, a Within-Project Defect

Prediction (WPDP) can be utilized for accurate fault-prone module prediction. In case a company does not maintain historical data, it may

be helpful to build a classifier towards predicting comprehensible fault prediction based on Cross-Project Defect Prediction (CPDP). Since

CPDP employs different project data collected from other organization to build a classifier, the main obstacle to build an accurate classifier

is that distributions between source and target projects are not similar. To address the problem, because it is crucial to identify effective

similarity measure techniques to obtain high performance for CPDP, In this paper, we aim to identify them. We compare various similarity

measure techniques. The effectiveness of similarity weights calculated by those similarity measure techniques are evaluated. The results

are verified using the statistical significance test and the effect size test. The results show k-Nearest Neighbor (k-NN), LOcal Correlation

Integral (LOCI), and Range methods are the top three performers. The experimental results show that predictive performances using the

three methods are comparable to those of WPDP.

Keywords : Cross-Project Defect Prediction, Similarity Measure, Outlier Detection

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구

류 덕 산†⋅백 종 문††

요 약

소프트웨어 결함 예측은 결함이 자주 발생하는 모듈에 집중함으로써 소프트웨어 품질 보증 활동에 귀중한 프로젝트 리소스를 효과적으로

할당하는 데 도움이 될 수 있다. 회사 내에서 수집 된 충분한 기록 데이터를 사용하여 정확한 결함 발생 가능성이 높은 모듈 예측에 대해

WPDP (프로젝트 내 결함 예측)를 사용할 수 있다. 회사가 과거 데이터를 유지하지 못한 경우 CPDP (Cross-Project Defect Prediction) 메커니

즘을 기반으로 오류를 예측하는 분류기를 만드는 것이 도움이 될 수 있다. CPDP는 다른 조직에서 수집 한 다른 프로젝트 데이터를 사용하여

분류기를 작성하기 때문에 정확한 분류기를 만드는데 가장 큰 장애물은 소스와 대상 프로젝트 간의 서로 다른 분포이다. 이 문제의 해결을 위

해 효과적인 유사도 측정 기술을 식별하는 것이 중요하므로, 본 논문에서는 다양한 유사도 측정 기술을 CPDP 모델에 적용하여 성능을 비교한

다. 유사도 가중치의 유효성을 평가하고, 통계적 유의성 검정 및 효과 크기 검정을 통해 결과를 검증한다. 실험 결과, k-Nearest Neighbor

(k-NN), LOcal Correlation Integral (LOCI) 및 Range 방법이 유사도 측정 기술 중 상위 3 개에 속했고, 이들을 사용하는 CPDP 예측 성능이

WPDP의 성능과 유사하였다.

키워드 : 교차 프로젝트 결함 예측, 유사도 측정, 이상점 발견

KIPS Tr. Software and Data Eng.
Vol.7, No.6 pp.205~220 pISSN: 2287-5905

1)

※ This research was supported by Basic Science Research Program through

the National Research Foundation of Korea (NRF) funded by the Ministry

of Education (NRF-2016R1D1A1A09917660, Artificial Intelligence-based

Quantitative Quality Prediction and Evaluation Technique for Software

Intensive System).

†정 회 원 : KAIST, School of Computing, Research Professor

††비 회 원 : KAIST, School of Computing, Professor

Manuscript Received : October 17, 2017

First Revision : December 28, 2017

Accepted : February 5, 2018

* Corresponding Author : Duksan Ryu(dsryu@kaist.ac.kr)

1. Introduction

The failures of software-intensive systems have led to

human and financial losses. It is crucial to identify and

eliminate software defects in that they may cause system

failures. The needs of software quality assurance activities,

i.e., testing and inspection, are enormously increasing but

resources for them are mostly limited. Thus, they should be

https://doi.org/10.3745/KTSDE.2018.7.6.205

206 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제6호(2018. 6)

allocated effectively onto fault-prone modules. Software

Defect Prediction (SDP) is a typical way to identify

fault-prone modules. SDP has been implemented through

classification models built by various machine learning

mechanisms [1-6]. When sufficient local data are available,

classification models can predict defects with a high degree

of accuracy. In this Within-Project Defect Prediction

(WPDP) case, the same distribution between training and

test data is the main reason of high accuracy. In case that

a company does not maintain local bug repositories,

Cross-Project Defect Prediction (CPDP) is the most useful.

It builds a predictor by using different project data. Different

distributions between a source project and a target project

are the main factors lowering performance under cross-

project (CP) environments. To deal with this problem,

previous CPDP studies [7-10] aimed at identifying effective

distributional dataset properties (e.g., mean, median,

minimum, maximum, and range) for calculating similarity

between a source project and a target project. In other

words, it is crucial to identify effective similarity measure

techniques to obtain high prediction performance under CP

environments.

Software defect datasets typically have much fewer

defective examples compared with non-defective examples.

Due to this class imbalance problem, specific learners could

not produce high predictive performance. It is also necessary

to deal with the class imbalance under CP environments.

Although distributional characteristics were employed to

measure the similarity in existing CPDP studies, the

comprehensive comparison of similarity measure techniques

has not been studied. This study investigates two research

questions:

• RQ1: Which similarity measure technique is more

effective for cross-project defect prediction?

• RQ2: Can our CPDP approach make the prediction

performance similar to within-project defect prediction?

In this study, we intend to identify similarity measure

techniques which are effective for enhancing the performance

of CPDP. We compare a variety of similarity measure

techniques based on angle, distance, density, cluster,

projection and statistical methods. The effectiveness of

similarity weights calculated by those similarity measure

techniques are evaluated with the classification model named

HISNN (Hybrid Instance Selection using Nearest Neighbor)

[11]. The experimental results are verified with the statistical

significance test and the effect size test.

The remaining sections of this study are organized as

follows. In section 2, we cover related work. In section 3,

similarity measure techniques we used in experiments are

explained. The setup for experiments is described in section

4. In section 5, the experimental results are described. In

section 6, threats to validity are explained. We summarize

the study and discuss future work in the final section.

2. Related Work

2.1 Software Defect Prediction

Software defect prediction (SDP) studies how to identify

fault-prone modules correctly over software bug database.

Its main objective is to support decision-making for the

effective allocation of limited resources, leading to software

quality improvement and the cost reduction. Many

researchers presented various Within-Project Defect

Prediction (WPDP) methods [3, 4, 6] requiring sufficient

historical data within an organization. A company has no

local data when developing the first versions of the software

system, i.e., pilot projects. In such cases, the company can

apply Cross-Project Defect Prediction (CPDP) mechanism,

utilizing defect data from other companies to construct a

classifier.

Zimmermann et al. [7] presented that only 21 among 622

CPDP cases were successful. They asserted that the

identification of process and data characteristics is vital for

dealing with different distributions between source and

target projects. They also suggested CPDP issues be

investigated by more researchers.

Ma et al. [9] proposed a Transfer Naive Bayes (TNB) for

CPDP. As a way of measuring the similarity between source

and target projects, range [12] was used. The similarity

weights calculated are used for building the proposed model.

Ryu et al.[13] suggested a boosting method for CPDP

considering both different distributions and class imbalance.

As similarity measure, the range was also used for

computing the similarity weights.

Turhan et al. [14] presented the relevancy filtering method

based on the nearest neighbor. As a similarity measure,

k-Nearest Neighbor (k-NN) was used to choose training

examples similar to the test project.

According to previous CPDP studies, the identification of

distributional properties between source and target projects

played an important role in the success of CPDP.

Consequently, it is important to identify effective similarity

measure techniques for CPDP.

2.2 Class Imbalance Learning

Mostly on software defect dataset, defective examples are

much fewer than non-defective examples. This issue is

called the class imbalance problem [15]. The class imbalance

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 207

issue results in lowering the predictive performance of the

classifiers [4]. Since misclassification of the defective class

(minority class) is directly associated with software quality,

it is important for the learner to produce high overall

performance and high performance for the defective class

without worsening the performance of the non-defective

class (majority class) in the context of class imbalance.

Grbac and Goran [16] investigated how the different levels

of imbalance over software defect datasets affect the

predictive stability of classification models. They presented

that the high imbalance ratio could lead to the unstable

predictive performance.

Chawla et al. [17] proposed Synthetic Minority Over-

sampling TEchnique (SMOTE) as a way to deal with the

class imbalance problem. Instead of duplicating the existing

examples, SMOTE creates synthetic minority class examples.

Such synthetic examples cause the classification model to

generate less specific decision regions. The prediction of the

minority class can be better generalized because the

classifier learns more general regions for minority class

examples. In our study, we apply SMOTE to achieve high

classification performance considering the context of class

imbalance.

3. Similarity Measure Techniques

In order to compute the similarity between a source

project and a target project, previous CPDP studies [7-10]

utilized distributional dataset properties, e.g., the mean,

median, minimum, maximum, and range. Since those

summary statistics only represent the overall dataset

characteristics, we try to identify more sophisticated

approaches reflecting the precise characteristics of a target

project.

In this section, we describe various similarity measure

techniques based on angle, distance, density, cluster,

projection, and statistical methods that can be applied into

CPDP. Such categories are based on the work of Aggarwal

[18]. The similarity measure technique is closely related to

the outlier detection in that an outlier can be described as a

data point distant from other data. Since outliers may indicate

data points belonging to a distribution different from the rest

of the dataset, the outlier detection can be connected to the

identification of dissimilar instances between the source and

the target projects under CP settings. Based on the target

project, the source project instances identified as outliers can

be considered dissimilar instances to the target project. The

source project instances identified as non-outliers can be

considered similar instances with the target project.

3.1 Angle-Based Method

3.1.1 Angle-Based Outlier Factor (ABOF) [19] evaluates

the variance over the angles between the difference vectors

of a data point to all pairs of data points. Interior data points

are probable to have data points around them at different

angles, whereas data points at the boundaries are probable

to enclose the whole data within a smaller angle. If many other

data points are placed in similar directions, a data point is

an outlier. If many other data points are placed in varying

directions, a data point is not outlier.

3.2 Distance-Based Methods

3.2.1 Range [12], the difference between the smallest and

the largest values, is one way to compute the similarity

between source and target projects [9, 13].

Given a sequence xi = {ai1, ai2, …, aik}, aij is the jth attribute

of xi. The minimum and maximum values of jth attribute in

test data are computed:

minj = min{a1j, a2j, …, amj}, maxj = max{a1j, a2j, …, amj}

where j = 1, 2, …, k, k is the number of attributes and m

is the number of test data. The following two vectors have

the minimum and maximum values of the attribute on test

data. Min = {min1, min2, …, mink} and Max = {max1, max2,

…, maxk}. Next, the similarity weight of each training

example can be computed as follows:

Si =
1

() /
k

ij
j

h a k



(1)

where

h(aij) = ൜1 ݂݅ ݆݉݅݊ ൑ ݆ܽ݅ ൑ 0݆ݔܽ݉ 																			݁ݏ݅ݓݎ݄݁ݐ݋ ,

aij is the jth attribute of instance xi.

If Si = 1, the ith instance is a similar instance. This

indicates that all the attributes of the ith instance are

positioned within the range.

3.2.2 k-Nearest Neighbor (k-NN) [20] selects the

nearest neighbors based on the distance function as similar

instances. Mostly, instance based learners use Euclidean

distance defined as:

Distance (X,Y) = ∑ ሺܺ݅ െ ܻ݅ሻ2݇݅ൌ1 (2)

where X and Y are the two instances, and Xi and Yi (i = 1..k)

are their attributes.

Besides Euclidean distance, Hamming distance [21] is a

useful way to calculate the distance. Particularly, [11, 22]

208 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제6호(2018. 6)

employed the minimum hamming distance to identify the

similar instances. The minimum hamming distance

(Min-Ham) indicates the minimum distance in Hamming

space where there is a neighbor.

Suppose Min-Ham(xi) = ,

HammingDistance(xi, xj)  , xj X (3)

For each data instance of the target project, the nearest

neighbors in the source project are selected as the similar

instances.

3.3 Density-Based Methods

3.3.1 Parzen-Window Density Estimation [23] is a

method commonly placing a Gaussian distribution around

each of the training instances. Given a data point x,

Parzen-window estimates the Probability Density Function

(PDF) P(x) from which the data point was derived.

When the difference between a source data instance and

the mean of the target project data is larger than three times

the standard deviation in the target data distribution, the

source data instance is a dissimilar instance.

3.3.2 Local Outlier Factor (LOF) [24] computes the

local deviation of a data point according to its neighbors for

the detection of outliers. The local density of a data point is

compared to the local densities of its neighbors. As such

regions of similar density can be identified. If points having

a considerably lower density than their neighbors, they are

outliers.

The LOF values of the source and the target project data

are computed. If source project instances have a significantly

lower density than their neighbors composed of the target

project data, they are dissimilar instances.

3.3.3 LOcal Correlation Integral (LOCI) [25] is an

algorithm to find outliers based on Multi-granularity

DEviation Factor (MDEF) handling local density variations

in the feature space.

The densities of each source project instance and its

neighborhood composed of the target project data are used

to compute the MDEF. If source project instances have a

density similar to their neighbors composed of the target

project data, they are similar instances.

3.4 Cluster-Based Method

3.4.1 k-means clustering [26] targets at partitioning n

instances into k clusters where each instance falls into the

cluster with the nearest mean. Based on the target project

data, clusters are formed. If the source project data are

positioned inside of the clusters, they are identified as similar

instances.

3.5 Projection-Based Methods

3.5.1 Principal Component Analysis (PCA) [27] is an

algorithm using an orthogonal linear transformation

converting the data to principal components in a new

coordinate system. The k-dimensional hyper-plane (k<d)

minimizing the squared projection error is determined in

PCA. A PCA on a target project is estimated and a source

project is mapped onto the PCA subspace. The distance

between the target project and the mapped source project is

used to identify similar instances.

3.5.2 Self-Organizing Map (SOM) [28], a.k.a. Kohonen

map is a method reducing the dimensions of data with

self-organizing neural networks. Unit, a special type of data

point is dynamic unlike the regular data points. Best

Matching Unit (BMU) is defined as the unit closest to the

input vector. SOM is trained with the target project data.

Dissimilar instances in source project data lie relatively far

away from the bulk of the target project data.

3.6 Statistical Models

3.6.1 Mixture Of Gaussians (MOG) model [29] is a

kind of a mixture model that assumes subpopulations are

present within an overall population. MOG parameters are

estimated from the target project data using the

Expectation-Maximization (EM) [29] algorithm. Data can be

clustered with MOG. Dissimilar instances in source project

data lie relatively far away from the clusters of the target

project data.

4. Methodology

4.1 Hypotheses for Research Questions

1. RQ1: Which similarity measure technique is more

effective for cross-project defect prediction?

We intend to check how differently similarity measure

techniques affect the classification performance of CPDP. To

this end, we compare various types of similarity measure

techniques based on angle, distance, density, cluster,

projection and statistical methods. As previous researches

[7-10] pointed out, the major challenge of CPDP is poor

classification performance owing to different distributions

between source and target projects. To tackle this issue,

previous studies used distributional characteristics as

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 209

similarity measure techniques. It is important to identify

effective similarity measure techniques in the context of

CPDP. To answer RQ1, the following hypotheses are

formalized:

• H10 : The performance of different similarity measure

techniques is the same.

• H1A : The performance of different similarity measure

techniques is not the same.

2. RQ2: Can our CPDP approach make the prediction

performance similar to within-project defect prediction?

It is commonly known that CPDP is inferior to WPDP

using the same distributional data in terms of the

classification performance [14]. In RQ2, we compare the

HISNN approach using the three most effective similarity

measure techniques with WPDP. Whereas the previous

research [30] suggest a method using a mixed project data,

combining CP and WP data, our proposed method uses only

CP data. Since the collection of WP data requires additional

effort and time, the benefits of our model is enormous if it

is comparable to WPDP. Not only can it hasten the time of

introducing SDP but also reduce the cost of introducing

SDP. To answer RQ2, the following hypotheses are

formalized:

• H20 : The proposed CPDP approach performs similarly

to within-project defect prediction.

• H2A : The proposed CPDP approach performs differently

from within-project defect prediction.

4.2 Benchmark Dataset

We employ the datasets from Jureczko and Spinellis [31]

for experiments. They can be accessed in PROMISE

repository [32]. They were extracted from open-source

software (OSS) projects, proprietary projects and academic

projects. In our experiments, 17 academic projects are

merged into the project named student since their size is

small. This merged version is also used in a previous CPDP

study [30]. Totally 16 datasets are used in the experiments.

Table 1 shows that the datasets encompass various software

projects in terms of size and buggy ratio. The number of

instances ranges from 26 to 904. The percentage of buggy

modules ranges from 3.8 to 76.9. In Table 2, 17 academic

projects that are merged into student project are described.

In this study, the first versions of projects are only used

since CPDP would be the most useful when there is no prior

version available.

All the projects contain 20 features, i.e., static code and

object-oriented metrics as shown in Table 3. The bug count

information in the dataset is used as a class label. If an

instance has any bug, it is marked as buggy module.

No Project

Instances

Buggy
%

Buggy
Description

1 ant 125 20 16 OSS

2 camel 339 13 3.8 OSS

3 ivy 111 63 56.7 OSS

4 jedit 272 90 33.1 OSS

5 log4j 135 34 25.2 OSS

6 lucene 195 91 46.7 OSS

7 pbeans 26 20 76.9 OSS

8 poi 237 141 59.5 OSS

9 prop-6 660 66 10 Proprietary

10 student 904 217 24 Academic

11 synapse 157 16 10.2 OSS

12 systemdata 65 9 13.8 OSS

13 tomcat 858 77 9 OSS

14 velocity 196 147 75 OSS

15 xalan 723 110 15.2 OSS

16 xerces 162 77 47.5 OSS

Table 1. Datasets Used in the Experiments

Projects

arc, berek, ckjm, e-learning, intercafe, kalkulator, nieruchomosci,

pdftranslator, redaktor, serapion, skarbonka, sklebagd, szybkafucha,

termoproject, workflow, wspomaganiepi, zuzel

Table 2. Student Dataset

Features

weighted methods per class (WMC), depth of inheritance tree (DIT),

number of children (NOC), coupling between object classes (CBO),

response for a class (RFC), lack of cohesion in methods (LCOM),

lack of cohesion in methods (LCOM3), number of public methods

(NPM), data access metric (DAM), measure of aggregation (MOA),

measure of functional abstraction (MFA), cohesion among methods

of class (CAM), inheritance coupling (IC), coupling between methods

(CBM), average method complexity (AMC), afferent couplings (Ca),

efferent couplings (Ce), maximum McCabe’s cyclomatic complexity

(Max(CC)), average McCabe’s cyclomatic complexity (Avg(CC)),

lines of code (LOC)

Table 3. Features for the Experiments

4.3 Comparative Framework

In this subsection, we describe the framework for

comparing various similarity measure techniques. The

comparative framework has two phases, i.e., preprocessing

and Hybrid Instance Selection using Nearest-Neighbor

(HISNN) [11]. Different similarity measure techniques are

applied within the HISNN model.

210 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제6호(2018. 6)

Fig. 1. The Comparative Framework

4.3.1 Preprocessing

In this phase, over-sampling with SMOTE [17] is

performed. Software defect datasets mostly have much

fewer defective instances compared with non-defective

instances. Specific learners could not produce high predictive

performance due to this class imbalance problem. SMOTE

can be effective for adding up the number of the minority

class instances in the training set. Thus, classification rules

can be defined well and the predictive performance can be

enhanced.

4.3.2 HISNN

Hybrid Instance Selection using Nearest-Neighbor

(HISNN) [11] is a selective learning method based on the

concept of LASER [22]. HISNN is a framework adapted for

CPDP. It checks if each target project instance has the

strong local knowledge on the basis of the source project. In

1 DATA = {ant, camel, ivy, jedit, log4j, lucene, pbeans, poi, prop-6, student, synapse, systemdata, tomcat, velocity,
xalan, xerces}

2 Sim_Measure = {abof, kmeans, knn(E), knn(H), loci, lof, mog, parzen, pca, range, som}

3 Local_Learner = {k-NN}

4 Global_Learner = {Naive Bayes}

5 for sim_measure ∈ Sim_Measure

6 for data ∈ DATA do

7 CPTrain = DATA – data

8 CPTrain' = Over-sample CPTrain' using SMOTE

9 CPTest = data

10 for i = 1 → 100 do

11 {Shuffle CPTest in each iteration}

12 CPTrain_wo_Outlier_1 = Remove outliers in CPTrain' based on CPTrain'

13 CPTrain_wo_Outlier_2 = Remove outliers in CPTrain' based on CPTest

14 CPTrain_Similar = Select similar instances in CPTrain' using sim_measure

15 CPTrain_Final = CPTrain_wo_Outlier_1 ∩ CPTrain_wo_Outlier_2 ∪ CPTrain_Similar

16 CPTrain_Final' = Select unique instances of CPTrain_Final

17 CPTrain_Final'' = Apply log filter to CPTrain_Final'

18 CPTest' = Apply log filter to CPTest

19 for each instance of CPTest

20 if the strong local knowledge of CPTrain' exists

21 Apply Local_Learner to the instance of CPTest using CPTrain'

22 else

23 Apply Global_Learner trained with CPTrain_Final'' to the instance of CPTest'

24 end if

25 end for

26 Report CP_PD(i), CP_PF(i), CP_Bal(i)

27 end for

28 end for

29 end for

Fig. 2. The Process of the Experiments

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 211

this case, the nearest neighbors and the nearest cluster [33]

are considered together.

If the nearest neighbors or the nearest cluster of an

instance have the same class label, it is considered as

having the strong local knowledge. If the strong local

knowledge is identified, the local instance selection strategy

using a local learner (i.e., k-NN) is performed. In case of

the weak local knowledge, the global instance selection

strategy is used. HISNN aims to build a global learner (i.e.,

Naive Bayes) using source data without irrelevant

instances. Naive Bayes is selected since it has shown high

performance in predicting defects compared with other

classifiers [4, 34]. Naive Bayes is built using the WEKA

machine learning toolkit [35].

At this time, HISNN employs two methods, i.e., outlier

detection and similarity weight computation to select the

source project instances similar to the target project in

accordance with CPDP. In the step of the outlier detection,

Mahalanobis distance [36] is used to identify abnormal

instances among the source project data. The Mahalanobis

distance between a data point and a distribution, measures

how away the point is from the mean. A data instance is

considered as an outlier if it is more than 3 standard

deviations away from the mean of the entire data

distribution.

Particularly, HISNN detects outliers among source data

instances from both the source project distribution and the

target project distribution. The outliers based on the source

project distribution can be counted as the extraneous

instance in the source project. The outliers based on the

target project distribution can be considered as extraneous

instances dropping down the predictive performance of the

target project. In the step of the similarity weight

computation, source project instances similar to the target

project are detected. To form final training data, the source

instances with no outliers and source instances similar to

test data are combined. These combined training data are

utilized to train a Naive Bayes model to predict target

instances that require the global knowledge.

In this study, in the step of the similarity weight

computation, different similarity measure techniques are

applied. Similarity measure techniques explained in section

3 are used for experiments. knn(E) indicates k-Nearest

Neighbor using Euclidean distance. As Turhan et al. [14]

did, k is set as 10. knn(H) indicates k-Nearest Neighbor

using the minimum Hamming distance. All the

experimental settings except for the similarity weight

computation are the same. For all the similarity measure

techniques, instances selected in the local instance selection

strategy are the same.

Fig. 2 shows the process of the comparison experiments.

To set up the CP settings, we chose each dataset to be a test

set and used the remaining datasets as a training set, The

number of the minority class instances are increased by the

SMOTE method. (lines 1-9)

Each experiment was iterated 100 times to reduce the

random bias. By using Mahalanobis distance, outliers among

source data instances are filtered out based on both the

source project distribution and the target project distribution.

The similar source instances are chosen with the similarity

weight computed by the similarity measure technique. The

final training data are formed by combining the source

instances with no outliers and source project instances

similar to the test project. Since such instances may not be

unique, only unique instances are chosen for the next step.

As previous studies [14, 37] recommended, log-filter (i.e.,

replacing N with ln(N)) is applied to training and test sets.

It is employed to fulfill the normality assumption of Naive

Bayes model. (lines 10-18)

Next, HISNN conducts the hybrid instance selection based

on the local knowledge. Each target project instance is

examined if there exists the strong local knowledge based on

the source project data. The class label of the target project

instance is found out by using the k-NN model. If there

exists no strong local knowledge, the Naive Bayes model

trained with the source project instances similar to the target

project is applied to test the target project instance. The

source data instances similar to the target data are only used

to build Naive Bayes model. Log filter is only used when

Naive Bayes model is applied. Details of HISNN can be

found in [11]. (lines 19-25)

The performance results of CPDP model are reported by

using Probability of Detection (PD), Probability of False

alarm (PF), and Balance (Bal). (lines 26)

In RQ1, we aim to find more effective similarity measure

techniques for CPDP. To this end, we compare the predictive

results of HISNN using 11 similarity measure methods over

16 datasets under cross-project settings.

In RQ2, we check if HISNN using the three most effective

similarity measure techniques found in RQ1 can provide

comparable performance in comparison with WPDP. We

compare our approach with Naive Bayes under WP settings.

As a baseline, we also include the relevancy filter proposed

by Turhan et al. [14] and Naive Bayes under CP environments.

The relevancy filter is chosen since it is widely used [14, 30,

38]. For WPDP, we split training and test data randomly by

212 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제6호(2018. 6)

a 50:50 ratio. This method is generally used in the literature

[10, 39]. We applied the log filter to all the cases.

4.4 Performance Evaluation

Software defect datasets typically have the class

imbalance issue. To measure the classifier built on the

imbalanced data set, multiple performance measures are

recommended [40]. The performance on the buggy class is

generally evaluated with Probability of Detection (PD) and

Probability of False alarm (PF). Balance can evaluate the

overall performance indicating how well a classifier can

balance predictive performance between buggy and clean

classes.

Predicted class

Buggy Clean

Actual

class

Buggy TP (True Positive) FN (False Negative)

Clean FP (False Positive) TN (True Negative)

Table 4. Confusion Matrix

As shown in Table 4, we can count the number of

correct/incorrect classification with confusion matrix. True

Positive (TP) is the number of buggy instances predicted

correctly as buggy. True Negative (TN) is the number of

clean instances predicted correctly as clean. False Positive

(FP) is the number of clean instances predicted incorrectly

as buggy. False Negative (FN) is the number of buggy

instances predicted incorrectly as clean. Using such counts,

we can derive the performance measures as follows:

• PD ൌ ܶܲܶܲ ൅ ܰܨ
• PF ൌ ܲܨܲܨ ൅ ܶܰ
• Balance ൌ 1 െ 0െܲܨ 2൅ 1െܲܦ 22
PD, a.k.a. recall, means the ratio of correct instances

retrieved. PF, a.k.a. the false positive rate, means the ratio

of clean instances misclassified within the clean class. Unlike

PD, PF is better when its value is lower. Balance is defined

as a Euclidean distance between the ideal (1, 0) point and the

real (PD, PF) point. A classifier producing high Balance

values is desired in that it can take a good balance of the

performance between the buggy and the clean classes.

On our experiments, we have multiple similarity measure

techniques over multiple data sets. For this case, the Friedman

test [41, 42] with the post-hoc tests are recommended by

Demsar [43]. If the null hypothesis meaning that the

performance of the comparisons is similar is rejected by the

Friedman test, this indicates that at least the performance

between two learners are significantly different from each

other. Then, we can proceed to find the groups of data that

No Target abof kmeans knn(E) knn(H) loci lof mog parzen pca range som

1 ant 0.85 0.85 0.8 0.8 0.85 0.85 0.85 0.85 0.85 0.85 0.85

2 camel 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615

3 ivy 0.571 0.555 0.492 0.412 0.507 0.507 0.555 0.571 0.539 0.428 0.571

4 jedit 0.788 0.788 0.777 0.766 0.777 0.788 0.788 0.788 0.788 0.777 0.788

5 log4j 0.764 0.764 0.735 0.647 0.647 0.735 0.764 0.764 0.764 0.764 0.764

6 lucene 0.593 0.593 0.593 0.582 0.56 0.593 0.593 0.593 0.593 0.582 0.593

7 pbeans 0.5 0.5 0.55 0.1 0.3 0.5 0.5 0.5 0.4 0.45 0.45

8 poi 0.666 0.673 0.687 0.702 0.645 0.659 0.68 0.68 0.666 0.673 0.673

9 prop-6 0.742 0.742 0.712 0.742 0.636 0.651 0.742 0.742 0.742 0.712 0.742

10 student 0.626 0.658 0.672 0.654 0.635 0.663 0.654 0.663 0.645 0.654 0.658

11 synapse 0.75 0.75 0.687 0.75 0.687 0.687 0.75 0.75 0.75 0.687 0.75

12 systemdata 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666

13 tomcat 0.662 0.701 0.662 0.48 0.493 0.48 0.701 0.714 0.688 0.142 0.701

14 velocity 0.38 0.387 0.367 0.401 0.34 0.353 0.38 0.38 0.353 0.36 0.387

15 xalan 0.818 0.818 0.809 0.827 0.809 0.809 0.818 0.827 0.809 0.809 0.818

16 xerces 0.337 0.337 0.35 0.324 0.324 0.324 0.337 0.35 0.337 0.324 0.337

 Median 0.664 0.6695 0.669 0.6505 0.6355 0.655 0.673 0.673 0.666 0.66 0.6695

Table 5. The Median PD Performance of HISNN using 11 Similarity Measure Techniques

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 213

differ via a post-hoc test. As the post-hoc test, various test

methods including Tukey's Honestly Significant Difference

test [44], Nemenyi test [45], and Bonferroni-Dunn test [46]

can be employed. We carried out Tukey's HSD test for our

experiments.

We carry out Wilcoxon rank-sum test [47] at a confidence

level of 95% to evaluate the performance between the two

distributions. This non-parametric test is recommended

because it does not make any assumption on the data

distribution unlike a Student's t-test [48].

We perform the effect size test called A-statistics [49] to

evaluate the magnitude of the improvement. Arcuri and

Briand [48] indicated this test is appropriate for evaluating

randomized algorithms in software engineering. A-statistics

means the probability of algorithm X providing higher M

values in comparison with another algorithm Y, where M is

a performance measure. For instance, A = 0.64 indicates that

X provides higher results 64% of the time. Based on the

guidelines [49], X is better(or worse) than Y if A > 0.64,

meaning a medium size difference. If A <= 0.64, X is not

better (or worse) than Y.

4.5 Implementation of Similarity Measure Technique

As the similarity measure techniques in the experiments,

we use outlier detection algorithms implemented in Data

Description Toolbox (DDtools) [50]. DDtools is the one-class

classification method dealing with a two-class classification

problem, having the target and the outlier class. The target

class is assumed to be sampled well. The outlier class is

sampled very sparsely. For executing outlier detection

algorithms, we use the default option FRACREJ = 0.1.

FRACREJ indicates the fraction of targets rejected, i.e. the

fraction of errors on the target class.

5. Result

We discuss the experimental results based on RQ1 and

RQ2. For RQ1, we aim at identifying more effective

similarity measure techniques under CP settings. For RQ2,

we check if our CPDP model employing the selected

similarity measure techniques is useful by comparing its

performance with that of the WPDP model.

5.1 Experiment 1: RQ1

We show the performance results of HISNN using 11

similarity measure techniques over 16 datasets. Table 5

shows the median PD performance. knn(E) indicates

k-nearest neighbor method using the Euclidean distance.

knn(H) indicates k-nearest neighbor method using the

minimum Hamming distance. In case of the median PD

values, mog and parzen show the best performance (0.673)

compared to other methods. loci is the worst performer

showing 0.6355. The other methods mostly show about 0.67.

In Table 6, the median PF values are shown. In this case,

No Target abof kmeans knn(E) knn(H) loci lof mog parzen pca range som

1 ant 0.571 0.542 0.428 0.419 0.447 0.542 0.552 0.552 0.542 0.542 0.552

2 camel 0.45 0.46 0.487 0.478 0.42 0.429 0.466 0.466 0.457 0.447 0.469

3 ivy 0.333 0.333 0.208 0.187 0.27 0.312 0.354 0.333 0.333 0.166 0.333

4 jedit 0.505 0.505 0.483 0.489 0.478 0.505 0.505 0.505 0.505 0.478 0.505

5 log4j 0.346 0.366 0.396 0.415 0.247 0.336 0.376 0.376 0.346 0.316 0.356

6 lucene 0.461 0.461 0.442 0.509 0.375 0.451 0.48 0.48 0.461 0.403 0.461

7 pbeans 0 0 0.166 0.166 0 0 0.166 0 0 0 0

8 poi 0.416 0.427 0.427 0.427 0.406 0.416 0.427 0.427 0.416 0.416 0.427

9 prop-6 0.622 0.622 0.574 0.607 0.469 0.486 0.622 0.651 0.614 0.515 0.622

10 student 0.43 0.458 0.468 0.508 0.425 0.448 0.446 0.461 0.435 0.432 0.458

11 synapse 0.624 0.631 0.574 0.56 0.581 0.609 0.638 0.638 0.631 0.617 0.631

12 systemdata 0.446 0.446 0.41 0.446 0.392 0.446 0.517 0.517 0.446 0.392 0.446

13 tomcat 0.349 0.37 0.357 0.302 0.18 0.249 0.366 0.375 0.368 0.24 0.37

14 velocity 0.428 0.448 0.428 0.51 0.428 0.428 0.448 0.448 0.428 0.428 0.428

15 xalan 0.512 0.535 0.5 0.53 0.481 0.495 0.512 0.535 0.508 0.5 0.515

16 xerces 0.482 0.482 0.482 0.47 0.494 0.494 0.482 0.494 0.482 0.494 0.482

 Median 0.448 0.459 0.435 0.474 0.4225 0.447 0.473 0.473 0.4515 0.43 0.4595

Table 6. The Median PF Performance of HISNN using 11 Similarity Measure Techniques

214 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제6호(2018. 6)

No Target abof kmeans knn(E) knn(H) loci lof mog parzen pca range som

1 ant 0.582 0.601 0.665 0.671 0.666 0.601 0.595 0.595 0.601 0.601 0.595

2 camel 0.58 0.575 0.56 0.565 0.597 0.592 0.572 0.572 0.577 0.582 0.57

3 ivy 0.616 0.607 0.611 0.564 0.602 0.587 0.598 0.616 0.598 0.579 0.616

4 jedit 0.612 0.612 0.623 0.616 0.627 0.612 0.612 0.612 0.612 0.627 0.612

5 log4j 0.703 0.692 0.663 0.614 0.695 0.697 0.686 0.686 0.703 0.72 0.697

6 lucene 0.565 0.565 0.575 0.534 0.591 0.57 0.554 0.554 0.565 0.589 0.565

7 pbeans 0.646 0.646 0.66 0.352 0.505 0.646 0.627 0.646 0.575 0.611 0.611

8 poi 0.622 0.619 0.625 0.631 0.618 0.619 0.623 0.623 0.622 0.625 0.619

9 prop-6 0.523 0.523 0.545 0.533 0.579 0.576 0.523 0.504 0.528 0.582 0.523

10 student 0.596 0.595 0.595 0.565 0.604 0.603 0.6 0.596 0.602 0.608 0.595

11 synapse 0.524 0.519 0.537 0.566 0.533 0.515 0.515 0.515 0.519 0.51 0.519

12 systemdata 0.606 0.606 0.625 0.606 0.635 0.606 0.564 0.564 0.606 0.635 0.606

13 tomcat 0.656 0.663 0.652 0.575 0.619 0.592 0.665 0.666 0.658 0.37 0.663

14 velocity 0.467 0.463 0.459 0.443 0.443 0.451 0.459 0.459 0.451 0.455 0.471

15 xalan 0.615 0.6 0.621 0.605 0.633 0.624 0.615 0.602 0.615 0.621 0.613

16 xerces 0.42 0.42 0.428 0.417 0.408 0.408 0.42 0.423 0.42 0.408 0.42

 Median 0.601 0.6005 0.616 0.5655 0.603 0.5965 0.5965 0.5955 0.5995 0.595 0.6005

Table 7. The Median Balance Performance of HISNN using 11 Similarity Measure Techniques

Fig. 3. Tukey’s Critical-Difference Diagram for PD, 1-PF and Balance

loci shows the best PF performance (0.4225) by comparison

with other methods. Most of the other methods show about

0.45.

In Table 7, the median Balance values are shown. With

respect to Balance, knn(E) produces the best result (0.616)

in comparison with other methods. The other methods

mostly produce about 0.6.

For PD and 1-PF, Friedman test indicated that the

performance difference among 11 similarity measure

techniques are statistically significant, showing p-value <

0.05. Thus, H10 is rejected. However, in terms of Balance, the

difference in performance scores among 11 similarity

measure methods were not statistically significant, showing

p-value > 0.05.

Fig. 3 shows the Tukey's HSD test results for HISNN

using 11 similarity measure techniques when PD, 1-PF, and

Balance are used as the performance measure. In Fig. 3, each

group mean is represented by a symbol and 95% confidence

interval is shown as a line around the symbol. If the intervals

of two groups are disjoint, they are different significantly. If

their intervals overlap, they are not different significantly.

Fig. 3 shows that the performance of PD, 1-PF and

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 215

No Target
Data

CP Naive Bayes CP Naive Bayes + NN WP Naive Bayes HISNN(knn(E)) HISNN(loci) HISNN(range)

PD PF B PD PF B PD PF B PD PF B PD PF B PD PF B

1 ant 1 0.666 0.528 0.9 0.495 0.642 0.85 0.471 0.639 0.8 0.428 0.665 0.85 0.447 0.666 0.85 0.542 0.601

2 camel 0.692 0.585 0.532 0.692 0.653 0.489 0.428 0.352 0.563 0.615 0.487 0.56 0.615 0.42 0.597 0.615 0.447 0.582

3 ivy 0.746 0.5 0.603 0.571 0.25 0.649 0.718 0.416 0.618 0.492 0.208 0.611 0.507 0.27 0.602 0.428 0.166 0.579

4 jedit 0.933 0.648 0.539 0.933 0.532 0.62 0.888 0.428 0.68 0.777 0.483 0.623 0.777 0.478 0.627 0.777 0.478 0.627

5 log4j 0.882 0.405 0.701 0.941 0.722 0.487 0.882 0.539 0.593 0.735 0.396 0.663 0.647 0.247 0.695 0.764 0.316 0.72

6 lucene 0.714 0.528 0.574 0.67 0.394 0.636 0.76 0.442 0.633 0.593 0.442 0.575 0.56 0.375 0.591 0.582 0.403 0.589

7 pbeans 0.55 0.166 0.66 0.5 0.333 0.575 0.8 0.666 0.507 0.55 0.166 0.66 0.3 0 0.505 0.45 0 0.611

8 poi 0.843 0.593 0.565 0.865 0.656 0.526 0.873 0.687 0.511 0.687 0.427 0.625 0.645 0.406 0.618 0.673 0.416 0.625

9 prop-6 0.893 0.67 0.52 0.712 0.518 0.58 0.59 0.316 0.617 0.712 0.574 0.545 0.636 0.469 0.579 0.712 0.515 0.582

10 student 0.617 0.359 0.628 0.732 0.48 0.611 0.88 0.655 0.529 0.672 0.468 0.595 0.635 0.425 0.604 0.654 0.432 0.608

11 synapse 0.937 0.73 0.481 0.937 0.702 0.501 0.75 0.394 0.643 0.687 0.574 0.537 0.687 0.581 0.533 0.687 0.617 0.51

12 systemdata 0.777 0.553 0.578 0.777 0.428 0.658 0.4 0.25 0.54 0.666 0.41 0.625 0.666 0.392 0.635 0.666 0.392 0.635

13 tomcat 0.792 0.389 0.687 0.246 0.186 0.451 0.846 0.37 0.712 0.662 0.357 0.652 0.493 0.18 0.619 0.142 0.24 0.37

14 velocity 0.578 0.612 0.474 0.7 0.653 0.492 0.689 0.44 0.596 0.367 0.428 0.459 0.34 0.428 0.443 0.36 0.428 0.455

15 xalan 0.9 0.61 0.562 0.909 0.654 0.532 0.854 0.462 0.657 0.809 0.5 0.621 0.809 0.481 0.633 0.809 0.5 0.621

16 xerces 0.415 0.588 0.413 0.441 0.635 0.401 0.615 0.232 0.669 0.35 0.482 0.428 0.324 0.494 0.408 0.324 0.494 0.408

 Median 0.784 0.586 0.5635 0.722 0.525 0.5535 0.780 0.434 0.6175 0.669 0.435 0.616 0.6355 0.4225 0.603 0.66 0.43 0.595

Table 8. The Median PD, PF and Balance Performance of Classifiers

Balance is better when its average rank is higher. The

performance results are sorted by the descending order of

the average rank.

In terms of PD, parzen shows the best performance.

Tukey's HSD tests showed that parzen scored statistically

significantly higher than knn(H), lof, range and loci. With

regard to 1-PF, loci shows the best performance. Tukey's

HSD tests showed that loci scored statistically significantly

better than knn(H), som, kmeans, mog and parzen. In regard

to Balance, knn(E) performs the highest. Tukey's HSD tests

showed that there is no similarity measure technique

statistically better than the others regarding Balance.

Based on Balance, the three highest methods are knn(E),

loci and range, indicating that they achieve the more balanced

prediction performance between PD and PF. Thus, they are

selected for further investigation. In the next subsection,

knn(E), loci and range are compared with WPDP for RQ2.

5.2 Experiment 2: RQ2

In this subsection, we compared HISNN using knn(E), loci

and range with Naive Bayes using a Nearest Neighbor filter

(CP Naive Bayes + NN) and Naive Bayes under CP settings

(CP Naive Bayes) as well as Naive Bayes under WP settings

(WP Naive Bayes). Although the main purpose of RQ2 is to

compare HISNN with WPDP, we additionally added CP Naive

Bayes and CP Naive Bayes + NN as baselines for comparison.

In Table 8, the median PD, PF and Balance scores of

classification models are presented. The best result of each

case is marked in boldface. In Fig. 4, median PD and PF

results of six classifiers over 16 datasets is illustrated in a

scatter plot. Since the ideal point is at PD=1 and PF=0, a

better classifier produces more data points at the bottom

right of the figure.

CP Naive Bayes showed the worst PF value (0.586)

whereas it showed the best PD value (0.784).Thus, more

points are located at the top right of the areas. In case of

high PF rates, it takes much time and effort for practitioners

to explore false alarms. In cases of ant, jedit, prop-6,

synapse, velocity, and xalan, PF values show more than 0.6.

Such high PF rates are not acceptable to most software

practitioners.

Turhan et al. [14] proposed the relevancy filter to mitigate

high PF rates. It lowers from 0.586 to 0.525 based on the

median PF values. Nevertheless, there are still cases showing

high PF rates (camel, log4j, poi, synapse, velocity, xalan, and

xerces). In Fig. 4, it also produces more data points at the

top right of the figure.

In WPDP, since both training and test sets have the same

data distribution, its prediction performance is expected to be

the best. WP Naive Bayes produces high PD (0.780) and low

PF (0.434). Regarding Balance, it also provides higher result

(0.6175) compared to CP Naive Bayes (0.5635) and the

216 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제6호(2018. 6)

Fig. 4. Scatter Plot of Median PD and PF Scores of four

Classifiers over 16 Datasets
Fig. 5. Mini Boxplots of Median PD, PF and Balance Scores

of Six Classifiers over 16 Datasets

relevancy filter (0.5535). However, there are cases producing

high PF values in cases of pbeans (0.666), poi (0.687), and

student (0.655).

HISNN using knn(E), loci and range produces the low PF

value (0.435, 0.4225, 0.43) in comparison with the other

classifiers. Compared to CP Naive Bayes and the relevance

filter, they show better Balance and PF performance.

In Experiment 1, Tukey's HSD test was performed.

However, it does not consider the actual performance, but only

the relative ranking [6]. In this subsection, a method to find

a statistically significant ranking of the approaches is

described.

Based on [5, 6], the variability of the models across

multiple runs can be evaluated. The mini box plot shows the

first, second and third quartile of each experimental case.

The models are sorted by their median values. A circle

means the median and a bar represents the first-third

quartile range. The smallest and the largest values are not

shown. The 100 points for each target project are merged as

each performance measure because we iterate each

experiment 100 times. For 16 projects, 1600 points are

utilized to compute the first, second and third quartile.

In Fig. 5, median PD, PF and Balance values of six

classifiers sorted by median are illustrated by mini boxplots.

HISNN using knn(E), loci and range reduces PF rates

effectively whereas it shows the lowest PD rates. They

show higher Balance values than CP NB and the relevancy

filter but lower than WP NB.

In Table 9, HISNN using knn(E) is compared to other

models according to the Wilcoxon rank-sum test at a 5%

significance level and the A-statistics effect size test. We

mark the significantly better performance of HISNN in

boldface. The significant difference indicates p-value < 0.05

and A-statistics > 0.64 for PD and Balance (A-statistics <

0.36 for PF). The boldface indicates the significantly better

performance of HISNN with p-value < 0.05 and A-statistics

> 0.64 for PD and Balance (A-statistics < 0.36 for PF).

A practically useful classifier should produce high PD and

low PF rates individually as well as high overall performance.

In Table 9, the Wilcoxon rank-sum test showed that the

difference in Balance scores between HISNN (knn(E)) and

other classifiers under CP settings are statistically significant

with p-value << 0.001. Regarding Balance, the effect size

values against CP NB and the relevancy filter are 0.61 (i.e.,

the small effect) and 0.65 (i.e., the medium effect)

respectively. We check if HISNN is similar to WPDP to

answer RQ2. In Table 9, the Wilcoxon rank-sum test

showed that the difference in Balance rates between HISNN

HISNN (knn(E)) vs. CP NB CP NB + NN WP NB

PD
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.25 0.32 0.28

PF
p-value << 0.001 << 0.001 0.67

A-statistic 0.23 0.30 0.50

Balance
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.61 0.65 0.43

Table 9. The Comparison of HISNN(knn(E)) with other Classifiers

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 217

HISNN (loci) vs. CP NB CP NB + NN WP NB

PD
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.22 0.27 0.25

PF
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.19 0.24 0.42

Balance
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.61 0.60 0.41

Table 10. The Comparison of HISNN(loci) with other Classifiers

HISNN (range) vs. CP NB CP NB + NN WP NB

PD
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.24 0.30 0.27

PF
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.23 0.27 0.46

Balance
p-value << 0.001 << 0.001 << 0.001

A-statistic 0.57 0.55 0.38

Table 11. The Comparison of HISNN(range) with other Classifiers

and Naive Bayes under WP settings are statistically

significant with p-value << 0.001. Although HISNN is worse

than WPDP in terms of the Wilcoxon rank-sum test, with

respect to the effect size test for Balance, the effect size was

0.43 meaning a small effect. Thus, we reject H20. The

comparison results using HISNN(loci) and HISNN(range)

are shown in Table 10 and 11. The results of the statistical

test and the effect size test are similar to that of HISNN

(knn(E)). The experimental results represent that HISNN

can be practically used under CP settings.

6. Threats to Validity

6.1 Threats to Construct Validity

In HISNN, target instances to use local knowledge are

separated from target instances to use global knowledge.

Then, the similarity measure techniques only apply to

instances to use global knowledge. Without such separation,

the similarity measure techniques using all the instances

may perform better / worse for CPDP.

We used DD tools with the default option, i.e., FRACREJ

= 0.1. Because we obtained the results using the single

choice of the value, different conclusions may be reached

when using other values.

6.2 Threats to External Validity

For our experiments, public datasets from the PROMISE

repository are employed. Because other software projects

have different distributional properties, our findings may not

be generalizable to them. Nevertheless, totally 16 datasets

encompass various software projects in terms of the type,

size and defect ratio. By doing so, we mitigate threats to

external validity as possible.

6.3 Threats to Conclusion Validity

For RQ1, Friedman test and Tukey's HSD test were

performed. As Demsar [43] indicated, the Friedman statistic

is considered as meaningful when the number of learners is

bigger than 5 and the number of data sets is bigger than 10.

This guideline is satisfied in that we have 11 learners built

with different similarity measure techniques over 16

datasets.

For RQ2, we performed Wilcoxon rank-sum test and the

A-statistics effect size test. The statistical significance

difference between two classifiers was checked by Wilcoxon

rank-sum test. We evaluated the magnitude of the

improvement using A-statistics effect size test. Two methods

have been accepted generally in software engineering [48].

7. Conclusion

Software Defect Prediction (SDP) has been widely studied

as a mechanism to identify defective modules. When

historical defect data are sufficiently available within a

company, classifiers can predict defects with a high degree

of accuracy. Within-Project Defect Prediction (WPDP) can

produce high performance owing to the same distributional

properties between training and test data. Cross-Project

218 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제6호(2018. 6)

Defect Prediction (CPDP) is the most helpful in case that

historical bug data are unavailable. Since a classifier is built

with different project data in CPDP, the main reason

lowering the predictive performance under cross-project

(CP) environments is different distributions between a

source project and a target project. To tackle the problem,

it is crucial to employ effective similarity measure techniques

identifying source project instances similar to the target

project.

In this study, we aim to identify similarity measure

techniques which are effective for enhancing the prediction

performance of CPDP. We compare 11 similarity measure

techniques based on angle, distance, density, cluster,

projection and statistical methods over 16 datasets. The

effectiveness of similarity weights calculated by those

similarity measure techniques are evaluated with the classifier

named HISNN (Hybrid Instance Selection using Nearest

Neighbor). Then we investigated if HISNN is similar to

WPDP when it is used with the appropriate similarity

measure technique. The experimental results are verified by

using the statistical significance test and the effect size test.

We identified the effective similarity measure techniques

under CP settings. In addition, without historical data, we

showed that CPDP can be comparable to WPDP if appropriate

similarity measure is employed.

We showed various similarity measure techniques

associated with the HISNN model that can be employed for

CPDP. The PF rates were effectively decreased but the PD

rates became lower as well. In future studies, we will

investigate how to remedy this shortcoming. In particular, the

relationships between each similarity measure technique and

three performance measures (i.e., PD, PF and Balance) need

to be investigated in depth.

References

[1] S. Kim, E. Whitehead, and Y. Zhang, “Classifying software

changes: Clean or buggy?,” Softw. Eng. IEEE Trans., Vol.

34, No.2, pp.181-196, 2008.

[2] K. O. Elish and M. O. Elish, “Predicting defect-prone

software modules using support vector machines,” J. Syst.

Softw., Vol.81, No.5, pp.649-660, May 2008.

[3] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A

systematic and comprehensive investigation of methods to

build and evaluate fault prediction models,” J. Syst. Softw.,

Vol.83, No.1, pp.2-17, Jan. 2010.

[4] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell,

“A Systematic Literature Review on Fault Prediction

Performance in Software Engineering,” IEEE Trans. Softw.

Eng., Vol.38, No.6, pp.1276-1304, Nov. 2012.

[5] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and

A. Bener, “Defect prediction from static code features:

current results, limitations, new approaches,” Autom. Softw.

Eng., Vol.17, No.4, pp.375-407, May 2010.

[6] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect

prediction approaches: A benchmark and an extensive

comparison,” Empir. Softw. Eng., Vol.17, No.4-5, pp.531-577,

Aug. 2012.

[7] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B.

Murphy, “Cross-project defect prediction,” in Proceedings

of the 7th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, pp.91-100,

2009.

[8] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An

investigation on the feasibility of cross-project defect

prediction,” Autom. Softw. Eng., Vol.19, No.2, pp.167-199, Jul.

2011.

[9] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning

for cross-company software defect prediction,” Inf. Softw.

Technol., Vol.54, No.3, pp.248-256, Mar. 2012.

[10] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,”

in Proceedings of the 35th International Conference on

Software Engineering, pp.382-391, 2013.

[11] D. Ryu, J. Jang, and J. Baik, “A Hybrid Instance Selection

using Nearest-Neighbor for Cross-Project Defect Prediction,”

J. Comput. Sci. Technol., Vol.30, No.5, pp.969-980, 2015.

[12] G. Woodbury, “An Introduction to Statistics.” Cengage

Learning, 2001.

[13] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with

a support vector machine for cross-project defect prediction,”

Empir. Softw. Eng., Vol.21, No.1, pp.43-71, Feb. 2016.

[14] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On

the relative value of cross-company and within-company

data for defect prediction,” Empir. Softw. Eng., Vol.14, No.5,

pp.540-578, Jan. 2009.

[15] T. Pang-Ning, M. Steinbach, and V. Kumar, “Introduction

to Data Mining.” 2006.

[16] T. Grbac, G. Mausa, and B. Basic, “Stability of Software

Defect Prediction in Relation to Levels of Data Imbalance.,”

in Proceedings of the 2nd Workshop of SQAMIA, 2013.

[17] N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, “SMOTE : Synthetic Minority Over-sampling

Technique,” J. Artif. Intell. Res., Vol.16, pp.321-357, 2002.

[18] C. C. Aggarwal, “Outlier Analysis.” New York, NY: Springer

New York, 2013.

[19] H.-P. Kriegel, M. Schubert, and A. Zimek, “Angle-based

outlier detection in high-dimensional data,” Proceeding 14th

ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD

’08), pp.444-452, 2008.

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 219

[20] N. Altman, “An introduction to kernel and nearest-neighbor

nonparametric regression,” Am. Stat., Vol.46, No.3, pp.175-185,

1992.

[21] R. Hamming, “Error Detecting and Error Correcting Codes,”

Bell Syst. Tech. J., Vol.XXIX, No.2, 1950.

[22] B. Raman and T. R. Ioerger, “Enhancing Learning using

Feature and Example selection,” Texas A&M Univ. Coll.

Station. TX, USA, 2003.

[23] E. Parzen, “On estimation of a probability density function

and mode,” Ann. Math. Stat., Vol.33, No.3, pp.1065-1076,

1962.

[24] M. Breunig, H. Kriegel, R. Ng, and J. Sander, “LOF:

identifying density-based local outliers,” ACM Sigmod Rec.,

pp.1-12, 2000.

[25] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C.

Faloutsos, “LOCI: Fast outlier detection using the local

correlation integral,” Proc. - Int. Conf. Data Eng., pp.315-326,

2003.

[26] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans.

Inf. Theory, Vol.28, No.2, pp.129-137, 1982.

[27] I. T. Jolliffe, “Principal Component Analysis.” Springer, 2002.

[28] T. Kohonen, “Self-organized formation of topologically

correct feature maps,” Biol. Cybern., Vol.43, No.1, pp.59-69,

1982.

[29] C. M. Bishop, “Pattern recognition and machine learning.”

New York, New York, USA: Springer, 2006.

[30] B. Turhan, A. Tosun Mısırlı, and A. Bener, “Empirical

evaluation of the effects of mixed project data on learning

defect predictors,” Inf. Softw. Technol., Vol.55, No.6, pp.1101-

1118, Jun. 2013.

[31] M. Jureczko and D. Spinellis, “Using Object-Oriented Design

Metrics to Predict Software Defects,” in Models and Methods

of System Dependability. Oficyna Wydawnicza Politechniki

Wrocławskiej, 2010, pp.69-81.

[32] T. Menzies et al., “The PROMISE Repository of empirical

software engineering data,” 2012. [Online]. Available:

http://openscience.us/repo/.

[33] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When

is “nearest neighbor” meaningful? Springer-Verlag, 1999.

[34] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,

“Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings,”

IEEE Trans. Softw. Eng., Vol.34, No.4, pp.485-496, 2008.

[35] M. Hall, E. Frank, and G. Holmes, “The WEKA data mining

software: an update,” ACM SIGKDD Explor. Newsl., Vol.11,

No.1, pp.10-18, 2009.

[36] P. C. Mahalanobis, “On the generalised distance in statistics,”

in Proceedings of the National Institute of Sciences of India,

Vol.2, No.1, pp.49-55, 1936.

[37] F. Menzies T, Greenwald J, “Data mining static code

attributes to learn defect predictors,” IEEE Trans. Softw.

Eng., Vol.33, No.1, pp.2-13, 2007.

[38] B. Turhan, A. Tosun, and A. Bener, “Empirical Evaluation

of Mixed-Project Defect Prediction Models,” in Proceedings

of the 37th EUROMICRO Conference on Software

Engineering and Advanced Applications, pp.396-403, 2011.

[39] Y. Kamei, S. Matsumoto, A. Monden, K. I. Matsumoto, B.

Adams, and A. E. Hassan, “Revisiting common bug

prediction findings using effort-aware models,” IEEE Int.

Conf. Softw. Maintenance, ICSM, 2010.

[40] S. Wang and X. Yao, “Using Class Imbalance Learning for

Software Defect Prediction,” IEEE Trans. Reliab., Vol.62,

No.2, pp.434-443, Jun. 2013.

[41] M. Friedman, “The use of ranks to avoid the assumption of

normality implicit in the analysis of variance,” J. Am. Stat.

Assoc., No.32, pp.675-701, 1937.

[42] M. Friedman, “A comparison of alternative tests of

significance for the problem of m rankings.,” Ann. Math.

Stat., No.11, pp.86-92, 1940.

[43] J. Demšar, “Statistical comparisons of classifiers over

multiple data sets,” J. Mach. Learn. Res., Vol.7, pp.1-30, 2006.

[44] J. Tukey, “Comparing individual means in the analysis of

variance,” Biometrics, No.5, pp.99-114, 1949.

[45] P. Nemenyi, “Distribution-free multiple comparisons.,”

Princeton University, 1963.

[46] O. J. Dunn, “Multiple comparisons among means,” J. Am.

Stat. Assoc., No.56, pp.52-64, 1961.

[47] F. Wilcoxon, “Individual comparisons by ranking methods,”

Biometrics Bull., pp.80-83, 1945.

[48] A. Arcuri and L. Briand, “A practical guide for using

statistical tests to assess randomized algorithms in software

engineering,” in 2011 33rd International Conference on

Software Engineering (ICSE), pp.1-10, 2011.

[49] A. Vargha and H. D. Delaney, “A Critique and Improvement

of the CL Common Language Effect Size Statistics of

McGraw and Wong,” J. Educ. Behav. Stat., Vol.25, No.2,

pp.101-132, 2000.

[50] D. M. J. Tax, “DDtools, the Data Description Toolbox for

Matlab.” 2014.

Duksan Ryu

http://orcid.org/0000-0002-9556-0873
e-mail : dsryu@kaist.ac.kr

He received his Ph.D. degree in School of

Computing from KAIST in 2016. He

earned a bachelor's degree in computer

science from Hanyang University and a

Master's dual degree in software engineering from KAIST and

Carnegie Mellon University. His research areas are software

defect prediction and software reliability engineering.

220 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제6호(2018. 6)

Jongmoon Baik

http://orcid.org/0000-0002-2546-7665
e-mail : jbaik@kaist.ac.kr

He received his M.S. degree and Ph.D.

degree in computer science from University

of Southern California in 1996 and 2000

respectively. He received his B.S. degree

in computer science and statistics from Chosun University in

1993. He worked as a principal research scientist at Software and

Systems Engineering Research Laboratory, Motorola Labs,

where he was responsible for leading many software quality

improvement initiatives. Currently, he is an associate professor

in School of Computing at Korea Advanced Institute of Science

and Technology (KAIST). His research activity and interest are

focused on software six sigma, software reliability & safety, and

software process improvement.

