1 |
S. Kim, E. Whitehead, and Y. Zhang, "Classifying software changes: Clean or buggy?," Softw. Eng. IEEE Trans., Vol. 34, No.2, pp.181-196, 2008.
DOI
|
2 |
K. O. Elish and M. O. Elish, "Predicting defect-prone software modules using support vector machines," J. Syst. Softw., Vol.81, No.5, pp.649-660, May 2008.
DOI
|
3 |
E. Arisholm, L. C. Briand, and E. B. Johannessen, "A systematic and comprehensive investigation of methods to build and evaluate fault prediction models," J. Syst. Softw., Vol.83, No.1, pp.2-17, Jan. 2010.
DOI
|
4 |
T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, "A Systematic Literature Review on Fault Prediction Performance in Software Engineering," IEEE Trans. Softw. Eng., Vol.38, No.6, pp.1276-1304, Nov. 2012.
DOI
|
5 |
T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener, "Defect prediction from static code features: current results, limitations, new approaches," Autom. Softw. Eng., Vol.17, No.4, pp.375-407, May 2010.
DOI
|
6 |
M. D'Ambros, M. Lanza, and R. Robbes, "Evaluating defect prediction approaches: A benchmark and an extensive comparison," Empir. Softw. Eng., Vol.17, No.4-5, pp.531-577, Aug. 2012.
DOI
|
7 |
T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, "Cross-project defect prediction," in Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, pp.91-100, 2009.
|
8 |
Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, "An investigation on the feasibility of cross-project defect prediction," Autom. Softw. Eng., Vol.19, No.2, pp.167-199, Jul. 2011.
DOI
|
9 |
Y. Ma, G. Luo, X. Zeng, and A. Chen, "Transfer learning for cross-company software defect prediction," Inf. Softw. Technol., Vol.54, No.3, pp.248-256, Mar. 2012.
DOI
|
10 |
J. Nam, S. J. Pan, and S. Kim, "Transfer defect learning," in Proceedings of the 35th International Conference on Software Engineering, pp.382-391, 2013.
|
11 |
D. Ryu, J. Jang, and J. Baik, "A Hybrid Instance Selection using Nearest-Neighbor for Cross-Project Defect Prediction," J. Comput. Sci. Technol., Vol.30, No.5, pp.969-980, 2015.
DOI
|
12 |
G. Woodbury, "An Introduction to Statistics." Cengage Learning, 2001.
|
13 |
D. Ryu, O. Choi, and J. Baik, "Value-cognitive boosting with a support vector machine for cross-project defect prediction," Empir. Softw. Eng., Vol.21, No.1, pp.43-71, Feb. 2016.
DOI
|
14 |
B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, "On the relative value of cross-company and within-company data for defect prediction," Empir. Softw. Eng., Vol.14, No.5, pp.540-578, Jan. 2009.
DOI
|
15 |
T. Pang-Ning, M. Steinbach, and V. Kumar, "Introduction to Data Mining." 2006.
|
16 |
T. Grbac, G. Mausa, and B. Basic, "Stability of Software Defect Prediction in Relation to Levels of Data Imbalance.," in Proceedings of the 2nd Workshop of SQAMIA, 2013.
|
17 |
N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE : Synthetic Minority Over-sampling Technique," J. Artif. Intell. Res., Vol.16, pp.321-357, 2002.
|
18 |
C. C. Aggarwal, "Outlier Analysis." New York, NY: Springer New York, 2013.
|
19 |
N. Altman, "An introduction to kernel and nearest-neighbor nonparametric regression," Am. Stat., Vol.46, No.3, pp.175-185, 1992.
|
20 |
H.-P. Kriegel, M. Schubert, and A. Zimek, "Angle-based outlier detection in high-dimensional data," Proceeding 14th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD '08), pp.444-452, 2008.
|
21 |
R. Hamming, "Error Detecting and Error Correcting Codes," Bell Syst. Tech. J., Vol.XXIX, No.2, 1950.
|
22 |
B. Raman and T. R. Ioerger, "Enhancing Learning using Feature and Example selection," Texas A&M Univ. Coll. Station. TX, USA, 2003.
|
23 |
E. Parzen, "On estimation of a probability density function and mode," Ann. Math. Stat., Vol.33, No.3, pp.1065-1076, 1962.
DOI
|
24 |
M. Breunig, H. Kriegel, R. Ng, and J. Sander, "LOF: identifying density-based local outliers," ACM Sigmod Rec., pp.1-12, 2000.
|
25 |
S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos, "LOCI: Fast outlier detection using the local correlation integral," Proc. - Int. Conf. Data Eng., pp.315-326, 2003.
|
26 |
S. Lloyd, "Least squares quantization in PCM," IEEE Trans. Inf. Theory, Vol.28, No.2, pp.129-137, 1982.
DOI
|
27 |
I. T. Jolliffe, "Principal Component Analysis." Springer, 2002.
|
28 |
T. Kohonen, "Self-organized formation of topologically correct feature maps," Biol. Cybern., Vol.43, No.1, pp.59-69, 1982.
DOI
|
29 |
C. M. Bishop, "Pattern recognition and machine learning." New York, New York, USA: Springer, 2006.
|
30 |
B. Turhan, A. Tosun MIsirli, and A. Bener, "Empirical evaluation of the effects of mixed project data on learning defect predictors," Inf. Softw. Technol., Vol.55, No.6, pp.1101-1118, Jun. 2013.
DOI
|
31 |
P. C. Mahalanobis, "On the generalised distance in statistics," in Proceedings of the National Institute of Sciences of India, Vol.2, No.1, pp.49-55, 1936.
|
32 |
M. Jureczko and D. Spinellis, "Using Object-Oriented Design Metrics to Predict Software Defects," in Models and Methods of System Dependability. Oficyna Wydawnicza Politechniki Wroclawskiej, 2010, pp.69-81.
|
33 |
T. Menzies et al., "The PROMISE Repository of empirical software engineering data," 2012. [Online]. Available: http://openscience.us/repo/.
|
34 |
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When is "nearest neighbor" meaningful? Springer-Verlag, 1999.
|
35 |
S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, "Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings," IEEE Trans. Softw. Eng., Vol.34, No.4, pp.485-496, 2008.
DOI
|
36 |
M. Hall, E. Frank, and G. Holmes, "The WEKA data mining software: an update," ACM SIGKDD Explor. Newsl., Vol.11, No.1, pp.10-18, 2009.
DOI
|
37 |
F. Menzies T, Greenwald J, "Data mining static code attributes to learn defect predictors," IEEE Trans. Softw. Eng., Vol.33, No.1, pp.2-13, 2007.
DOI
|
38 |
S. Wang and X. Yao, "Using Class Imbalance Learning for Software Defect Prediction," IEEE Trans. Reliab., Vol.62, No.2, pp.434-443, Jun. 2013.
DOI
|
39 |
B. Turhan, A. Tosun, and A. Bener, "Empirical Evaluation of Mixed-Project Defect Prediction Models," in Proceedings of the 37th EUROMICRO Conference on Software Engineering and Advanced Applications, pp.396-403, 2011.
|
40 |
Y. Kamei, S. Matsumoto, A. Monden, K. I. Matsumoto, B. Adams, and A. E. Hassan, "Revisiting common bug prediction findings using effort-aware models," IEEE Int. Conf. Softw. Maintenance, ICSM, 2010.
|
41 |
M. Friedman, "The use of ranks to avoid the assumption of normality implicit in the analysis of variance," J. Am. Stat. Assoc., No.32, pp.675-701, 1937.
|
42 |
M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings.," Ann. Math. Stat., No.11, pp.86-92, 1940.
|
43 |
J. Demsar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., Vol.7, pp.1-30, 2006.
|
44 |
J. Tukey, "Comparing individual means in the analysis of variance," Biometrics, No.5, pp.99-114, 1949.
|
45 |
P. Nemenyi, "Distribution-free multiple comparisons.," Princeton University, 1963.
|
46 |
O. J. Dunn, "Multiple comparisons among means," J. Am. Stat. Assoc., No.56, pp.52-64, 1961.
|
47 |
F. Wilcoxon, "Individual comparisons by ranking methods," Biometrics Bull., pp.80-83, 1945.
|
48 |
A. Arcuri and L. Briand, "A practical guide for using statistical tests to assess randomized algorithms in software engineering," in 2011 33rd International Conference on Software Engineering (ICSE), pp.1-10, 2011.
|
49 |
D. M. J. Tax, "DDtools, the Data Description Toolbox for Matlab." 2014.
|
50 |
A. Vargha and H. D. Delaney, "A Critique and Improvement of the CL Common Language Effect Size Statistics of McGraw and Wong," J. Educ. Behav. Stat., Vol.25, No.2, pp.101-132, 2000.
DOI
|