• Title/Summary/Keyword: Soft-template synthesis

Search Result 10, Processing Time 0.026 seconds

Synthesis of Cobalt-Iron Prussian Blue Analogues Nanotubes by CTAB Soft-Template Method

  • Liu, Peng;Liang, Chuanghui;Xu, Jianfeng;Fang, Jian;Zhao, Jihua;Shen, Weiguo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1336-1338
    • /
    • 2010
  • Three cobalt-iron Prussian Blue Analogues (PBAs) nanotubes contained with different alkali metal cations of K, Rb or Cs, respectively, were prepared by using cetyltrimethylammonium bromide (CTAB)/ethanol-water micelles as soft templates. The products were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron micrograph (SEM), which confirmed the composition of the substances and their unique nanotube structures. Furthermore, the formation mechanism of the PBAs nanotubes was discussed and provided useful insight for further synthesis of nanotubes of other Prussian blue analogues.

Versatile Strategies for Fabricating Polymer Nanomaterials with Controlled Size and Morphology

  • Yoon, Hyeon-Seok;Choi, Moon-Jung;Lee, Kyung-Jin;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.85-102
    • /
    • 2008
  • The development of reliable synthetic routes to polymer nanomaterials with well-defined size and morphology is a critical research topic in contemporary materials science. The ability to generate nanometer-sized polymer materials can offer unprecedented, interesting insights into the physical and chemical properties of the corresponding materials. In addition, control over shape and geometry of polymer nanoparticles affords versatile polymer nanostructures, encompassing nanospheres, core-shell nanoparticles, hollow nanoparticles, nanorods/fibers, nanotubes, and nanoporous materials. This review summarizes a diverse range of synthetic methods (broadly, hard template synthesis, soft template synthesis, and template-free synthesis) for fabricating polymer nanomaterials. The basic concepts and significant issues with respect to the synthetic strategies and tools are briefly introduced, and the examples of some of the outstanding research are highlighted. Our aim is to present a comprehensive review of research activities that concentrate on fabrication of various kinds of polymer nanoparticles.

Synthesis of Silver Nanoplates with Fibronectin Nanofibril Template and Their SERS Applications

  • Wang, Li;Sun, Yujing;Cui, Yuncheng;Wang, Jiku;Li, Zhuang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.443-446
    • /
    • 2013
  • In this work, a novel strategy is provided to prepare silver nanoplates by a fibronectin (Fn) nanofibril template. First, Fn molecules were controlled to assemble into amyloid-like nanofibrils in highly concentrated ethanol aqueous solution. The resultant nanofibrils could serve as a soft template to direct the formation of silver nanoplates. It is worth noting that the silver nanoplates are excellent surface-enhanced Raman scattering (SERS) substrate with 4-aminothiophenol (4-ATP) molecule as a test probe. This high active SERS substrate can also be used to detect drug molecule, 2-thiouracil with high sensitivity.

Korean Prosody Generation Based on Stem-ML (Stem-ML에 기반한 한국어 억양 생성)

  • Han, Young-Ho;Kim, Hyung-Soon
    • MALSORI
    • /
    • no.54
    • /
    • pp.45-61
    • /
    • 2005
  • In this paper, we present a method of generating intonation contour for Korean text-to-speech (TTS) system and a method of synthesizing emotional speech, both based on Soft template mark-up language (Stem-ML), a novel prosody generation model combining mark-up tags and pitch generation in one. The evaluation shows that the intonation contour generated by Stem-ML is better than that by our previous work. It is also found that Stem-ML is a useful tool for generating emotional speech, by controling limited number of tags. Large-size emotional speech database is crucial for more extensive evaluation.

  • PDF

Synthesis of Double Mesoporous Silica Nanoparticles and Control of Their Pore Size (이중 다공성 실리카 나노입자 합성 및 공극 크기 조절)

  • Park, Dae Keun;Ahn, Jung Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.167-169
    • /
    • 2021
  • In this study, monodispersive silica nanoparticles with double mesoporous shells were synthesized, and the pore size of synthetic mesoporous silica nanoparticles was controlled. Cetyltrimethylammonium chloride (CTAC), N, N-dimethylbenzene, and decane were used as soft template and induced to form outer mesoporous shell. The resultant double mesoporous silica nanoparticles were consisted of two layers of shells having different pore sizes, and it has been confirmed that outer shells with larger pores (Mean pore size > 2.5 nm) are formed directly on the surface of the smaller pore sized shell (Mean pore size < 2.5 nm). It was confirmed that the regulation of the molar ratio of pore expansion agents plays a key role in determining the pore size of double mesoporous shells.

Soft-template Synthesis of Magnetically Separable Mesoporous Carbon (자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • In this study, we synthesized mesoporous carbon (Carbonized Ni-FDU-15) containing nanoporous structures and magnetic nanoparticles. Carbonized Ni-FDU-15 was synthesized via evaporation-induced self-assembly (EISA) and direct carbonization by using a triblock copolymer (F127) as a structure-directing agent, a resol precursor as a carbon-pore wall forming material, and nickel (II) nitrate as a metal ion source. The mesoporous carbon has a well-ordered two-dimensional hexagonal structure. Meanwhile, nickel (Ni) metal and nickel oxide (NiO) were produced in the magnetic nanoparticles in the pore wall. The size of the nanoparticles was about 37 nm. The surface area, pore size and pore volume of Carbonized Ni-FDU-15 were $558m^2g^{-1}$, $22.5{\AA}$ and $0.5cm^3g^{-1}$, respectively. Carbonized Ni-FDU-15 was found to move in the direction of magnetic force when magnetic force was externally applied. The magnetic nanoparticle-bearing mesoporous carbons are expected to have high applicability in a wide variety of applications such as adsorption/separation, magnetic storage media, ferrofluid, magnetic resonance imaging (MRI) and drug targeting, etc.

A Vision-based Approach for Facial Expression Cloning by Facial Motion Tracking

  • Chun, Jun-Chul;Kwon, Oryun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.2
    • /
    • pp.120-133
    • /
    • 2008
  • This paper presents a novel approach for facial motion tracking and facial expression cloning to create a realistic facial animation of a 3D avatar. The exact head pose estimation and facial expression tracking are critical issues that must be solved when developing vision-based computer animation. In this paper, we deal with these two problems. The proposed approach consists of two phases: dynamic head pose estimation and facial expression cloning. The dynamic head pose estimation can robustly estimate a 3D head pose from input video images. Given an initial reference template of a face image and the corresponding 3D head pose, the full head motion is recovered by projecting a cylindrical head model onto the face image. It is possible to recover the head pose regardless of light variations and self-occlusion by updating the template dynamically. In the phase of synthesizing the facial expression, the variations of the major facial feature points of the face images are tracked by using optical flow and the variations are retargeted to the 3D face model. At the same time, we exploit the RBF (Radial Basis Function) to deform the local area of the face model around the major feature points. Consequently, facial expression synthesis is done by directly tracking the variations of the major feature points and indirectly estimating the variations of the regional feature points. From the experiments, we can prove that the proposed vision-based facial expression cloning method automatically estimates the 3D head pose and produces realistic 3D facial expressions in real time.

Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2 Composite (다공성 Co3O4/RuO2 복합체 합성 및 전기화학적 특성)

  • Lim, Hye-Min;Ryu, Kwang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.118-122
    • /
    • 2012
  • We synthesized porous $Co_3O_4/RuO_2$ composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by $OH^-$ ion. The porous $Co_3O_4/RuO_2$ composite was completely synthesiszed after anealing until $250^{\circ}C$ at $3^{\circ}C$/min. From the XRD ananysis, we were able to determine that the porous $Co_3O_4$/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous $Co_3O_4/RuO_2$ composite was studied by FE-SEM and FE-TEM. The size of the porous $Co_3O_4/RuO_2$ composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous $Co_3O_4/RuO_2$ composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.

Antibacterial mesoporous Sr-doped hydroxyapatite nanorods synthesis for biomedical applications

  • Gopalu Karunakaran;Eun-Bum Cho;Keerthanaa Thirumurugan;Govindan Suresh Kumar;Evgeny Kolesnikov;Selvakumar Boobalan
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.507-519
    • /
    • 2023
  • Postsurgical infections are caused by implant-related pathogenic microorganisms that lead to graft rejection. Hence, an intrinsically antibacterial material is required to produce a biocompatible biomaterial with osteogenic properties that could address this major issue. Hence, this current research aims to make strontium-doped hydroxyapatite nanorods (SrHANRs) via an ethylene diamine tetraacetic acid (EDTA)-enable microwave mediated method using Anodontia alba seashells for biomedical applications. This investigation also perceives that EDTA acts as a soft template to accomplish Sr-doping and mesoporous structures in pure hydroxyapatite nanorods (HANRs). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis reveals the crystalline and mesoporous structures, and Brunauer-Emmett-Teller (BET) indicates the surface area of all the samples, including pure HANRs and doped HANRs. In addition, the biocidal ability was tested using various implant-related infectious bacteria pathogens, and it was discovered that Sr-doped HANRs have excellent biocidal properties. Furthermore, toxicity evaluation using zebrafish reports the non-toxic nature of the produced HANRs. Incorporating Sr2+ ions into the HAp lattice would enhance biocompatibility, biocidal activity, and osteoconductive properties. As a result, the biocompatible HANRs materials synthesized with Sr-dopants may be effective in bone regeneration and antibacterial in-built implant applications.

Synthesis and Electrochemical Properties of Nitrogen Doped Mesoporous TiO2 Nanoparticles as Anode Materials for Lithium-ion Batteries (질소도핑 메조다공성 산화티타늄 나노입자의 합성 및 리튬이온전지 음극재로의 적용)

  • Yun, Tae-Kwan;Bae, Jae-Young;Park, Sung-Soo;Won, Yong-Sun
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Mesoporous anatase $TiO_2$ nanoparticles have been synthesized by a hydrothermal method using a tri-block copolymer as a soft template. The resulting $TiO_2$ materials have a high specific surface area of $230\;m^2/g$, a predominant pore size of 6.8 nm and a pore volume of 0.404 mL/g. The electrochemical properties of mesoporous anatase $TiO_2$ for lithium ion battery (LIB) anode materials have been investigated by typical coin cell tests. The initial discharge capacity of these materials is 240 mAh/g, significantly higher than the theoretical capacity (175 mAh/g) of LTO ($Li_4Ti_5O_{12}$). Although the discharge capacity decreases with the C-rate increase, the mesoporous $TiO_2$ is very promising for LIB anode because the surface for the Li insertion is presented significantly with mesopores. Nitrogen doping has a certain effect to control the capacity decrease by improving the electron transport in $TiO_2$ framework.