• Title/Summary/Keyword: Soft switching PWM

Search Result 241, Processing Time 0.03 seconds

A Study on Two Stage PFC Full-Bridge Converter with a Single PWM Controller (단일 PWM 제어기에 의한 역률보상 이단 풀 브리지 컨버터에 관한 연구)

  • Jeon, Joon-Sang;Kim, Yong;Kwon, Soon-Do;Kim, Pil-Soo;Yoon, Suk-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.368-371
    • /
    • 2000
  • Two-stage power factor correction (PFC) converter with a single PWM controller is proposed. It consists of a power factor pre-regulator cascaded by an isolated DC/DC converter as in a conventional two-stage approach. However, a single PWM controller is used as in a single-stage, single-switch PFC approach. This converter gives the goof power factor correction, low line current harmonic distortions, and tight output voltage regulations. This converter also has a high efficiency by employing an soft switching method. The proposed approach has advantages such as high performance over the single-stage approach and low cost over two-stage approach. The experimental results obtained on a 300W (30V/10A) prototype PFC converter are given to verify the effectiveness of the proposed control method.

  • PDF

Transformer Parasitic Inductor and Lossless Capacitor-Assisted Soft-Switching DC-DC Converter with Synchronous Phase-Shifted PWM Rectifier with Capacitor Input Filter

  • Saitoh, Kouhei;Abdullah Al, Mamun;Gamage, Laknath;Nakaoka, Mutsuo;Lee, Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.217-221
    • /
    • 2001
  • This paper presents a new prototype of soft-switching DC-DC power converter with a high frequency transformer link which has two active power controlled switches in full bridge rectifier with capacitor input type smoothing filter. In this DC-DC converter, ZVS of the inverter in transformer primary side and ZCS of active rectifier area in secondary side can be completely achieved by taking advantage of parasitic inductor component of high-frequency transformer and loss less snubbing capacitors. Its operation principle and salient features are described. The steady-state operating characteristics of the proposed DC-DC power converter are illustrated and discussed on the basis of the simulation results in addition to the experimental ones obtained by 2kw-40kHz power converter breadboard set up.

  • PDF

Utility Interactive Solar Power Conditioner with Zero Voltage Soft Switching High frequency Sinewave Modulated Inverter Link

  • Terai H.;Sumiyoshi S.;Kitaizumi T.;Omori H.;Ogura K.;Chandhaket S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.668-672
    • /
    • 2001
  • The utility interactive sinewave modulated inverter for the solar photovoltaic (PV) power conversion and conditioning with a new high frequency pulse modulated link is presented for domestic residential applications. As compared with the conventional full-bridge hard switching PWM inverter with a high frequency AC link, the simplest single-ended quasi-resonant soft switching sinewave modulated inverter with a duty cycle pulse control is implemented, resulting in size and weight reduction and low-cost. This paper presents a prototype circuit of the single-ended zero voltage soft switching sinewave inverter for solar power conditioner and its operating principle. In addition, this paper proposes a control system to deliver high quality output current. Major design of each component and the power loss analysis under actual power processing is also discussed from an experimental point of view. A newly developed interactive sinewave power processor which has $92.5\%$ efficiencty at 4kW output is demonstrated. It is designed 540mm-300mm-125mm in size, and 20kg in weight.

  • PDF

A study on the ZVT method of high frequency DC-DC converter (ZVT방식 고주파 DC-DC 콘버어터 개발에 관한 연구)

  • Kye, Moo-Ho;Joe, Kee-Yeon;Hong, Sung-Chul;Kim, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.345-347
    • /
    • 1994
  • It is importent to have the switching frequency of power supplies increase in order to reduce their size and weight. But according to increasing the switching frequency, there are several defacts - that is switching losses, high voltage/current stresses and conduction losses and so on. That's why soft switching method was proposed. This paper presents the simulation and analysis of the new proposed Full bridge Zero-Voltage-Transition PWM DC-DC converter for developing that unit. This circuit doesen't increase the voltage and current stresses of main MOSFET switches. Voltage type quasi-resorent method is applied and expected high effenciency. Switching frequency is 100KHz and main switches are MOSFET.

  • PDF

Operation Characteristic of Transless type Grid-connected Inverter using Multi-level Switching circuit (멀티레벨 스위칭 회로를 이용한 트렌스리스형 계통 연계 인버터의 동작 특성)

  • Kim, Ju-Yong;No, Kwae-Hyeop;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.916-917
    • /
    • 2008
  • In this paper, Switching damage of switches that is used to proposed power conversion system is reduced by soft switching way. dissipation by part resonance and my resonance stress for resonance of resonance circuit are decreased. Is acted by conversion system high effectiveness. Have following characteristic. Design snubber circuit that is used by switch protection in existent hard work rate Topology by resonant circuit for sogt switching, circuit structure was simple and control system is easy. Also, Can generate free output voltage by multi level Tuesday of output that use individuation Power Cell's Phase Shift PWM, and Low-end switching frequency the harmonic is few.

  • PDF

Conducted Noise Reduction in Active clamp ZVS flyback converter using Random Pulse Width Modulation (RPWM 기법을 이용한 능동클램프 ZVS 플라이백 컨버터 전도노이즈저감)

  • Kim Young-Gyu;Choi Tae-Young;Won Chung-Yuen;Kim Jae-Moon;Kim Gyu-Sik;Choi Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.498-501
    • /
    • 2002
  • In the conventional PWM converter, high-frequency switching techniques was used for high-density of energy, but occurred a lot of problems such as switching losses, switching voltage/current stresses, EMI(Electromgnetic Interference) and so on. To overcome these problems, various soft switching techniques have been presented. However these techniques are focused on reducing switching losses and voltage/current stresses . The simulation and experimental results are shown that the active clamp ZVS flyback converter with the proposed RPWM(Random Pulse Width Modulation) technique reduces the conducted noise.

  • PDF

Current-Source Pulse Density Modulated Parallel Resonant Inverter with A Single Resonant Snubber and Its Unique Application

  • Wang Y.X.;Koudriavtsev O.;Konishi Y.;Okuno A.;Nakaoka M.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.261-265
    • /
    • 2001
  • In this paper, a current-source type parallel indudor compensated load resonant high-frequency soft switching inverter using IGBTs for driving the newly-produced silent discharge type ozone generating tube and excimer lamp for UV generation which incorporate a single switched capacitor resonant snubber between the port in DC busline side is presented, together with its pulse modulated unique output power regulation characteristics.

  • PDF

Analysis, Design, and Implementation of a High-Performance Rectifier

  • Wang, Chien-Ming;Tao, Chin-Wang;Lai, Yu-Hao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.905-914
    • /
    • 2016
  • A high-performance rectifier is introduced in this study. The proposed rectifier combines the conventional pulse width modulation, soft commutation, and instantaneously average line current control techniques to promote circuit performance. The voltage stresses of the main switches in the rectifier are lower than those in conventional rectifier topologies. Moreover, conduction losses of switches in the rectifier are certainly lower than those in conventional rectifier topologies because the power current flow path when the main switches are turned on includes two main power semiconductors and the power current flow path when the main switches are turned off includes one main power semiconductor. The rectifier also adopts a ZCS-PWM auxiliary circuit to derive the ZCS function for power semiconductors. Thus, the problem of switching losses and EMI can be improved. In the control strategy, the controller uses the average current control mode to achieve fixed-frequency current control with stability and low distortion. A prototype has been implemented in the laboratory to verify circuit theory.

Active Front End Inverter with Quasi - resonance

  • Siebel, Henrik;Pacas, J.M.
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • A new three-phase soft-switching active front-end inverter is presented. The topology consists of a quasi-resonant PWM boost converter with an additional resonant branch, which provides low loss at high frequency operation. This leads to a high conversion efficiency and a remarkable reduction in the siBe of the input inductor. To synchronise the PWM pattern with the resonance cycle, a modified space vector modulation with asymmetrical PWM pattern is used. A high power factor can be achieved for both power flow directions. Due to a new control strategy the converter features a low content of harmonics in the line currents even for distorted line voltages.

Practical Development of One-Stage Soft-Switching PWM High Frequency Inverter (1단 소프트스위칭 PWM 고주파 인버터의 실용개발)

  • Lee, Jun-Yup;Kang, Ju-Sung;Eid, Ahmad;Ahmed, Tarek;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.788-791
    • /
    • 2005
  • 이 논문은 부스트 하프 브릿지 1단 인버터기술을 혼합한 나아진 소프트스위칭 PWM 전력공급이 대체로 관계한다. 동작원리는 등가회로와 동작파형을 사용하여 설명하고 있다. 유효주파수 AC 동작 실행 시 1단 전력변환에 고주파 AC 전력변환 회로는 실험결과의 기초를 설명하고 평가한다. 전력변동률 대 고주파 듀티 사이클 특성과 전력변환 효율특성을 이전에 개발된 고주파와 비교하여 인버터전력소실을 나타냈다. 그것의 효과는 관찰의 실행 포인트로부터 실험 결과의 기초를 충분히 증명한다.

  • PDF