• Title/Summary/Keyword: Soft robot

Search Result 105, Processing Time 0.046 seconds

Intelligent Space and Ontological Network System

  • Yamaguchi, Toru;Sato, Eri;Murakami, Hiroki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.126-129
    • /
    • 2003
  • The robot has recently emerged as a factor in the daily lives of humans, taking the form of a mechanical pet or similar source of entertainment. A robot system that is designed to co-exist with humans, i.e., a coexistence-type robot system, is important to be "it exists in various environments with the person, and robot system by which the interaction of n physical, informational emotion with the person etc. was valued". When studying the impact of intimacy in the human/robot relationship, we have to examine the problems that can arise as a result of physical intimacy(coordination on safety in the hardware side and a soft side). Furthermore, We should also consider the informational aspects of intimacy (recognition technology, and information transport and sharing).

  • PDF

Walking of a biped robot with compliant ankle joints (순응성 발목 관절을 갖는 두발 로보트의 보행)

  • 이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1157-1160
    • /
    • 1996
  • Control of a biped robot which has compliant ankle joints is dealt in this paper. Simulated version of a human ankle joint is built using springs and mechanical constraints, which gives a flexibility of joint and compliance against the touching ground. The biped robot with compliant ankle joints proposed here gives a good contact between its sole and the ground and makes foot landing soft. As a result, installing force sensors for measuring the center of gravity of the biped becomes easier. A motor to drive an ankle joint is not needed which makes legs light. However, the control problem becomes more difficult because the torque of the ankle joint to put the biped in a desired walking gait cannot be provided from the compliant ankle joint. To solve this problem, we proposed a dynamic gait modification method by adjusting the position of a hip joint. Simulation results for the mathematical model of the SD-2 biped in the Ohio State University are given to show the validity of the proposed controller.

  • PDF

Interoperating Methods of Heterogeneous Networks for Personal Robot System (퍼스널 로봇을 위한 이기종 네트웍 운용 방안)

  • Choo, Seong-Ho;Li, Vitaly;Lee, Jung-Bae;Park, Tai-Kyu;Jang, Ik-Gyu;Jung, Ki-Deok;Choi, Dong-Hee;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.86-88
    • /
    • 2004
  • Personal Robot System in developing, have a module architecture, each module are connected through variety network system like ethernet, WLAN (802.11), IEEE 1394 (firewire), bluetooth, CAN, or RS-232C. In developing personal robot system. We think that the key of robot performance is interoperablity among modules. Each network protocol are well connected in the view of network system for the interoperability. So we make a bridging architecture that can routing converting, and transporting packets with matching each network's properties. Furthermore, we suggest a advanced design scheme for realtime / non-realtime and control signal (short, requiring hard-realtime) / multimedia data (large, requiring soft-realtime).

  • PDF

Development of an Automated Indoor Floor Finish Robot Platform (건축 내부 바닥 미장 자동화 로봇 플랫폼 개발)

  • Ji-Youn Moon;Dong-Ju Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.853-858
    • /
    • 2023
  • Various types of robots are being utilized in the construction industry. Particularly, there is high interest in robots that can be applied to plastering automation, which can ensure consistent work quality. In this paper, we propose a robot platform based on wheels for plastering automation. Through experiments, we measured the surface pressure according to the air pressure of the wheel using the designed robot. As a result, we were able to confirm that the designed robot could perform plastering work on soft mortar with uniformly low pressure per wheel.

Soft Morphing Motion of Flytrap Robot Using Bending Propagating Actuation (밴딩 전파 구동을 이용한 파리지옥 로봇의 소프트 모핑 동작)

  • Kim, Seung-Won;Koh, Je-Sung;Cho, Maeng-Hyo;Cho, Kyu-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.168-174
    • /
    • 2012
  • This paper presents a bending propagating actuation using SMA (Shape Memory Alloy) spring for an effective shape transition of a flytrap-inspired soft morphing structure. The flytrap-inspired soft morphing structure is made from unsymmetric CFRP (Carbon Fiber Reinforced Prepreg) structure which shows bi-stability and snap-through phenomenon. For a thin and large curved bistable CFRP structure, SMA spring is more acceptable than SMA wire and piezoelectric actuator which used in previous investigations. A bending propagating actuation is proposed which can induce snap-through of the bi-stable CFRP structure effectively. From this research, effective shape transition of soft morphing structure is possible.

Development of an Electro-hydraulic Soft Zipping Actuator with Self-sensing Mechanism (자가 변위 측정이 가능한 전기-유압식 소프트 지핑 구동기의 개발)

  • Lee, Dongyoung;Kwak, Bokeon;Bae, Joonbum
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.79-85
    • /
    • 2021
  • Soft fluidic actuators (SFAs) are widely utilized in various areas such as wearable systems due to the inherent compliance which allows safe and flexible interaction. However, SFA-driven systems generally require a large pump, multiple valves and tubes, which hinders to develop a miniaturized system with small range of motion. Thus, a highly integrated soft actuator needs to be developed for implementing a compact SFA-driven system. In this study, we propose an electro-hydraulic soft zipping actuator that can be used as a miniature pump. This actuator exerts tactile force as a dielectric liquid contained inside the actuator pressurized its deformable part. In addition, the proposed actuator can estimate the internal dielectric liquid thickness by using its self-sensing function. Besides, the electrical characteristics and driving performance of the proposed system were verified through experiments.

Shape Prediction Method for Electromagnet-Embedded Soft Catheter Robot (전자석 내장형 소프트 카테터 로봇 형상 예측 방법)

  • Sanghyun Lee;Donghoon Son
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 2024
  • This study introduces a novel method for predicting the shape of soft catheter robots embedded with electromagnets. As an advancement in the realm of soft robotics, these catheter robots are crafted from flexible and pliable materials, ensuring enhanced safety and adaptability during interactions with human tissues. Given the pivotal role of catheters in minimally invasive surgeries (MIS), our design stands out by facilitating active control over the orientation and intensity of the inbuilt electromagnets. This ensures precise targeting and manipulation of the catheter segments. The research encompasses a comprehensive breakdown of the magnetic modeling, tracking algorithms, experimental layout, and analytical techniques. Both simulation and experimental results validate the efficacy of our method, underscoring its potential to augment accuracy in MIS and revolutionize healthcare-oriented soft robotics.

Novel Zero-Voltage-Transition Synchronous Buck Converter for Portable System (휴대용 시스템을 위한 새로운 영전압 천이형 싱크로너스 벅 컨버터)

  • Kim, Nak-Yoon;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.330-336
    • /
    • 2012
  • In this paper, novel zero-voltage-transition(ZVT) synchronous buck converter of pulse-width-modulation(PWM) method is proposed to utilize auxiliary circuit. In this proposed scheme, designed to operate low output voltage for portable system and applied synchronous scheme to improve efficiency. Also proposed circuit is designed to do soft-switching operation in every switch. In this paper, the circuit operation is explained and analysed, and design guidelines are presented. To verify the availability of the proposed circuit, experiment and simulation is carried out.

Mapless Navigation with Distributional Reinforcement Learning (분포형 강화학습을 활용한 맵리스 네비게이션)

  • Van Manh Tran;Gon-Woo Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2024
  • This paper provides a study of distributional perspective on reinforcement learning for application in mobile robot navigation. Mapless navigation algorithms based on deep reinforcement learning are proven to promising performance and high applicability. The trial-and-error simulations in virtual environments are encouraged to implement autonomous navigation due to expensive real-life interactions. Nevertheless, applying the deep reinforcement learning model in real tasks is challenging due to dissimilar data collection between virtual simulation and the physical world, leading to high-risk manners and high collision rate. In this paper, we present distributional reinforcement learning architecture for mapless navigation of mobile robot that adapt the uncertainty of environmental change. The experimental results indicate the superior performance of distributional soft actor critic compared to conventional methods.

A Self-Regulated Robot System using Sensor Network (센서 네트워크를 이용한 자율 로봇 시스템)

  • Park, Chul-Min;Jo, Heung-Kuk;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1954-1960
    • /
    • 2008
  • Modem Robot is used in all industries. Previous Robot was used by simplicity work, at recent times, robot is developed in form that can do action such as a person. Robot's action runs according to command repeat or in the every moment according to sensor's output value, achieve other action. In this raper, we studied about self-regulation transfer robot that follow Object autonomously. This robot can be used by purpose that carry heavy burden instead of human. Robot's composition is drive part which run object's position awareness Sensor, Processor that control action and Motor part. After robot is connects with Network, we did robot remote control and monitor the action situation of robot. For the methode to reduce drive error, we developed algorithm for outside environment. For an experiment we made the self-regulation robot. We showed the directivity of sensor, error of directivity and soft moving of robot. We showed the monitoring system and the execution screen for communication between robot and PC.