Browse > Article
http://dx.doi.org/10.7746/jkros.2021.16.2.079

Development of an Electro-hydraulic Soft Zipping Actuator with Self-sensing Mechanism  

Lee, Dongyoung (UNIST)
Kwak, Bokeon (UNIST)
Bae, Joonbum (UNIST)
Publication Information
The Journal of Korea Robotics Society / v.16, no.2, 2021 , pp. 79-85 More about this Journal
Abstract
Soft fluidic actuators (SFAs) are widely utilized in various areas such as wearable systems due to the inherent compliance which allows safe and flexible interaction. However, SFA-driven systems generally require a large pump, multiple valves and tubes, which hinders to develop a miniaturized system with small range of motion. Thus, a highly integrated soft actuator needs to be developed for implementing a compact SFA-driven system. In this study, we propose an electro-hydraulic soft zipping actuator that can be used as a miniature pump. This actuator exerts tactile force as a dielectric liquid contained inside the actuator pressurized its deformable part. In addition, the proposed actuator can estimate the internal dielectric liquid thickness by using its self-sensing function. Besides, the electrical characteristics and driving performance of the proposed system were verified through experiments.
Keywords
Soft Actuator; Electrostatic Actuator; Hydraulic Force; Human-Robot Interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Biswas and Y. Visell, "Emerging Material Technologies for Haptics," Advanced Materials Technologies, vol. 4, no. 4, 2019, DOI: 10.1002/admt.201900042.   DOI
2 A. K. Han, S. Ji, D. Wang, and M. R. Cutkosky, "Haptic Surface Display based on Miniature Dielectric Fluid Transducers," IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4021-4027, Jul., 2020, DOI: 10.1109/LRA.2020.2985624.   DOI
3 A. K. Katiyar, A. A. Davidson, H. Jang, Y. Hwangbo, B. Han, S. Lee, Y. Hagiwara, T. Shimada, H. Hirakata, T. Kitamura, and J.-H. Ahn, "Ultrasoft silicon nanomembranes: thickness-dependent effective elastic modulus," Nanoscale, vol. 11, no. 32, 2019, DOI: 10.1039/C9NR03995C.   DOI
4 S. Biswas and Y. Visell, "Emerging Material Technologies for Haptics," Advanced Materials Technologies, vol. 4, no. 4, Apr., 2019, DOI: 10.1002/admt.201900042.   DOI
5 P. Polygerinos, N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal, K. Petersen, M. Cianchetti, M. T. Tolley, and R. F. Shepherd, "Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction," Advanced Engineering Materials, 2017, DOI: 10.1002/adem.201700016.   DOI
6 T. Nakamura and A. Yamamoto, "Modeling and control of electroadhesion force in DC voltage," Robomech Journal, vol. 4, no. 18, 2017, DOI: 10.1186/s40648-017-0085-3.   DOI
7 M. Cruz, K.-U. Kyung, H. Shea, H. Bose, and I. Graz, "Applications of Smart Materials to Haptics," IEEE Transactions on Haptics, vol. 11, no. 1, 2018, DOI: 10.1109/TOH.2018.2809058.   DOI
8 H. Ishizuka and N. Miki, "MEMS-based tactile displays," Displays, vol. 37, pp. 25-32, Apr., 2015, DOI: 10.1016/j.displa.2014.10.007.   DOI
9 H. H. King, R. Donlin, and B. Hannaford, "Perceptual thresholds for single vs. multi-finger haptic interaction," 2010 IEEE Haptics Symposium, Waltham, MA, USA, 2010, DOI: 10.1109/HAPTIC.2010.5444670.   DOI
10 M. Landgraf, U. Zorell, T. Wetzel, S. Reitelshofer, I. S. Yoo, and J. Franke, "Dielectric elastomer actuators as self-sensing devices: a new method of superimposing actuating and sensing signals," Electroactive Polymer Actuators and Devices (EAPAD), 2015, DOI: 10.1117/12.2083572.   DOI
11 R. M. Fish and L. A. Geddes, "Conduction of electrical current to and through the human body: a review," Eplasty, vol. 9, 2009, [Online]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763825/.
12 G. Moretti, M. Duranti, M. Righi, R. Vertechy, and M. Fontana, "Analysis of dielectric fluid transducers," Electroactive Polymer Actuators and Devices (EAPAD), 2018, DOI: 10.1117/12.2297082.   DOI
13 N. Kellaris, V. Gopaluni Venkata, G. M. Smith, S. K. Mitchell, and C. Keplinger, "Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation," Science Robotics, vol. 3, no. 14, Jan., 2018, DOI: 10.1126/scirobotics.aar3276.   DOI
14 M. Taghavi, T. Helps, and J. Rossiter, "Electro-ribbon actuators and electro-origami robots," Science Robotics, vol. 3, no. 25, 2018, DOI: 10.1126/scirobotics.aau9795.   DOI
15 I. M. Koo, K. Jung, J. C. Koo, J.-D. Nam, Y. K. Lee, and H. R. Choi, "Development of Soft-Actuator-Based Wearable Tactile Display," IEEE Transactions on Robotics, vol. 24, no. 3, pp. 549-558, Jun., 2008, DOI: 10.1109/TRO.2008.921561.   DOI
16 S. Mun, S. Yun, S. Nam, S. K. Park, S. Park, B. J. Park, J. M. Lim, and K.-U. Kyung, "Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices," IEEE Transactions on Haptics, vol. 11, no. 1, pp. 15-21, 2018, DOI: 10.1109/TOH.2018.2805901.   DOI
17 M. Duranti, M. Righi, R. Vertechy, and M. Fontana, "A new class of variable capacitance generators based on the dielectric fluid transducer," Smart Materials and Structures, vol. 26, no. 11, 2017, DOI: 10.1088/1361-665X/aa8753.   DOI