• Title/Summary/Keyword: Soft Soil

Search Result 1,146, Processing Time 0.022 seconds

A NEW FEEDBACK TECHNIQUE FOR TUNNEL SAFETY BY USING MEASURED DISPLACEMENTS DURING TUNNEL EXCAVATION

  • Sihyun PARK;Yongsuk SHIN;Sungkun PARK
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.432-439
    • /
    • 2009
  • This research project was carried out to develop the technique to assess quantitatively and rapidly the stability of a tunnel by using the measured displacement at the tunnel construction site under excavation. To achieve this purpose, a critical strain concept was introduced and applied to an assessment of a tunnel under construction. The new technique calculates numerically the strains of the surrounding ground by using the measured displacements during excavation. A numerical practical system was developed based on the proposed analysis technique in this study. The feasibility of the developed analysis module was verified by incorporating the analysis results obtained by commercial programs into the developed analysis module. To verify the feasibility of the developed analysis module, analysis results of models both elastic and elasto-plastic grounds were investigated for the circular tunnel design. Then the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using critical strain concept. It was verified that stress conditions of in-situ ground and ground material properties were accurately assessed by inputting the calculated displacement obtained by commercial program into this module for the elastic ground. However for the elasto-plastic ground, analysis module can reproduce the initial conditions more closely for the soft rock ground than for the weathered soil ground. The stability of tunnels evaluated with two types of strains, that is, the strains obtained by dividing the crown displacement into a tunnel size and the strains obtained by using the analysis module. From this study, it is confirmed that the critical strain concept can be fully adopted within the engineering judgment in practical tunnel problems and the developed module can be used as a reasonable tool for the assessment of the tunnel stability in the field.

  • PDF

Characterization of Composite Ground Reinforced with Recycled-Aggregate Porous Concrete Pile (RAPP) (순환골재 다공질 콘크리트말뚝(RAPP)에 의해 보강된 복합지반의 거동 특성)

  • You, Seung-Kyong;Kim, Se-Won;Lee, Chul-Ho;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.117-130
    • /
    • 2009
  • In this paper, a series of laboratory chamber tests were carried out to evaluate the applicability of a porous concrete pile fabricated with recycled aggregates (RAPP) for the soft ground improvement. While performing the laboratory chamber tests for the RAPP, the surface settlement, excess pore pressure and vertical stress distribution with time were compared with those of SCP provided by You (2003) under the same experimental condition. In addition, the experimental results were compared with the numerical simulation using ABAQUS in this study. The results show that the settlement reduction is significantly enhanced due to the stress-sharing mechanism between the RAPP and soil formation by stress concentration on the RAPP. Furthermore, the comparison of consolidation rate shows that the RAPP can accelerate consolidation as well, which behaves as a vertical drain.

Evaluation of the Roadbed Behavior During Tilting-train Operation in Curved Track Using Numerical Analysis (틸팅차량의 곡선부 운행시 수치해석을 이용한 노반거동 평가)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.115-126
    • /
    • 2007
  • The tilting-train is very attractive to the railroad users in the world because it runs with high speed in curved track using pre-existing infrastructure. The tilting-train has a unique allowable speed and mechanism expecially in curved track. Therefore, it should be evaluated in terms of the stability of the train operation and roadbed. In this study, when the tilting-train is being operated with the allowable speed, the behavior of the roadbed is evaluated by examining the settlement and bearing capacity of the roadbed. Additionally, the stability of the roadbed is estimated in the condition of soft roadbed influenced by the weather effects and cyclic train loading. The numerical results show that the roadbed settlements satisfy the allowable settlement when Young's moduli of the upper roadbed and in-situ soil are more than $2,300t/m^2\;and\;3,300t/m^2$, respectively, in the continuous welded rail (CWR) and $3,800t/m^2\;and\;4,600t/m^2$, respectively, in the rail joint.

Characteristic Values of Design Parameters for Geotechnical Reliability Design (지반신뢰성 설계를 위한 설계변수의 특성치 연구)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.27-35
    • /
    • 2008
  • Geotechnical characteristic values for reliability-based design were analyzed using domestic marine clays. Analysis results indicate that there were close to mean values in oder of Student/Ovesen, Schneider and EN 1990's approach. However, it was found that the EN 1990's approach is inappropriate far estimating geotechnical characteristic value due to low reliability of estimation results. Four approaches had a trend of evaluating characteristic value conservatively with increasing of soil variability. Also, stability and settlement of breakwater subjected to nominal stress with unimproved soft grounds were computed to investigate the effects of estimated characteristic values. In case of using the Schneider's approach, the ratio of allowable bearing capacity/acting loads suggested 65% of that obtained from using the arithmetic mean approach, and showed underestimated value of 13.6% of the settlement obtained from the latter. The comparison of case designs using a representative value from arithmetic mean approach with the proposed approaches, using characteristic value showed that the former was mostly overestimated.

Analysis of Mat Foundation by Considering Interface with Rock Mass (전면기초-하부암반 접촉면의 영향분석)

  • Lee, Jae-Hwan;Cho, Jae-Yeon;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.39-47
    • /
    • 2010
  • In recent days, the foundations of huge structures in general and mega foundations of grand bridges and high-rise buildings in particular are required in geotechnical engineering. This study described 3 dimensional behavior of mat foundation on soft rock based on a numerical study using 3D finite element method. A series of numerical analyses were performed for various soil conditions and mat rigidities under vertical loading. Based on the results of the parametric study, it is shown that the prediction of the settlement, cross sectional tensile stress and bending moments in the mat is overestimated in the analysis without considering interface behavior in comparison with the analysis considering interface between mat and rock mass.

Evaluation of Spatial Distribution of Secondary Compression of Songdo Marine Clay by Probabilistic Method (확률론적 방법을 이용한 인천송도지반 이차압축침하량의 공간적 분포 평가)

  • Kim, Dong-Hee;Bae, Kyung-Doo;Ko, Seong-Kwon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.25-35
    • /
    • 2010
  • Settlement at reclamation area caused by secondary compression should be considered using spatial evaluating method because the thickness of consolidation layer varies at every location. Probabilistic method can be implemented to evaluate uncertainty of spatial distribution of secondary compression. This study spatially evaluated mean and standard deviation of secondary compression in the overall analyzing region using spatial distribution of consolidation thickness estimated by ordinary kriging method and statistical values of soil properties. And then, the area where secondary compression exceeds a design criterion at the specific time was evaluated using probabilistic method. It was observed that the area exceeding the design criterion increased as the variability of $C_{\alpha}/(1+e_o)$ increased or the probabilistic design criterion 0: decreased. It is considered that the probabilistic method can be used for the geotechnical design of soft ground when a probabilistic design criterion is established in the specification.

Expansion Ratio and Ultimate Load of Pulse-Discharge Bulbed Anchors (펄스방전 그라운드 앵커의 확공특성 및 극한인발력에 관한 연구)

  • Kim, Nak-Kyung;Kim, Sung-Kyu;Joo, Yong-Sun;Seo, Hyo-Kyun;Kim, Sun-Ju
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.5-10
    • /
    • 2009
  • The ground anchor is not usually used in soft clay and loose sand, because the pullout resistance of anchors can not be guaranteed. However, there is a method to increase the capacity of anchors using electric discharge geotechnical technologies, which are also known as pulse discharge and electric-spark technologies. The pulse-discharge anchor has a bulbed (or underreamed) bond length that is expanded by high voltage electrokinetic pulse energy. 24 anchors were installed in the weathered soil and sandy clay at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea. In this study, in order to define a relation between expansion rate of the anchor diameter and ultimate load, anchor load tests were carried out in accordance with testing procedures by AASHTO (AASHTO 1990) and FHWA (Weatheb 1998). And then several anchors were exhumed to measure the diameter of the pulse discharge anchors.

Development of Automatic Shear-wave Source for Downhole Seismic Method (다운홀 탄성파 기법용 전단파 자동 가진원의 개발)

  • Bang, Eun-Seok;Sung, Nak-Hoon;Kim, Jung-Ho;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.27-37
    • /
    • 2007
  • Downhole seismic method is very economic and easy to operate because it uses only one borehole and simple surface source to obtain the shear wave velocity profile of a site. In this study, automatic shear wave source was developed for efficient downhole seismic testing. This source is motor-spring type and easy to control. It can lessen the labor of operator and the working time. Moreover, it can provide better and repetitive signals for data interpretation. By combining developed automatic source with automatic receiver system, PC based data acquisition system, advanced managing program, and semi-automatic downhole performing system were constructed. Through comparison test with manual source, advantages of automatic source were verified. Constructed semi-automatic downhole testing system including automatic shear wave source was applied to the soft soil site. The applicability and reliability were verified and the importance of automating testing system for obtaining reliable result was emphasized.

Correlating Undrained Shear Strength and Density of Silt with Shear Wave Velocity (실트의 비배수 전단강도 및 밀도와 전단파속도와의 상관관계)

  • Oh, Sang-Hoon;Park, Dong-Sun;Jung, Jae-Woo;Park, Chul-Soo;Mok, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.79-87
    • /
    • 2008
  • Recently, a new seismic probe, called "MudFork", has been developed and can be utilized for accurate and easy measurements of shear wave velocities of cohesive soils. To expand its use to estimate undrained shear strength and density, a preliminary investigation to correlate these properties with shear wave velocity was attempted. Cone penetration tests and a seismic test, using MudFork, were performed at a silty soil site near Incheon, Korea. Also, undisturbed samples were obtained using thin-wall tube samplers, and the shear wave velocities and undrained shear strengths of the samples were measured in the laboratory. A simple linear relationship between shear strength and shear wave velocity was obtained, and a tentative relationship between density and shear wave velocity was also defined.

Geotechnical Characteristics of DCM-Improved Specimen Under Artesian Pressure (피압 작용에 따른 DCM 개량체의 지반공학적 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • This study investigated the effect of artesian pressure on mechanical properties of deep cement mixing (DCM)-improved specimens. Various laboratory tests such as unconfined compression test and scanning electron microscope (SEM) were conducted on DCM specimens which curied in a water tank with different artesian pressures. The artesian pressure was determined in consideration of the laboratory scale and the hydraulic gradient in field conditions. Results of experimental tests indicated that unconfined compressive strength, secant modulus, and unit weight of specimen decreased and water content tended to increase as an artesian pressure increased. The stress-strain behavior changed brittle to ductile behaviors as an artesian pressure increased. The outflow water from the water tank reacted with the phenolphthalein solution due to the leaching phenomenon of the improved specimen. SEM analysis also confirmed that a small amount of ettringite was formed between soil particles in the specimens with artesian pressure.