DOI QR코드

DOI QR Code

Correlating Undrained Shear Strength and Density of Silt with Shear Wave Velocity

실트의 비배수 전단강도 및 밀도와 전단파속도와의 상관관계

  • Published : 2008.05.31

Abstract

Recently, a new seismic probe, called "MudFork", has been developed and can be utilized for accurate and easy measurements of shear wave velocities of cohesive soils. To expand its use to estimate undrained shear strength and density, a preliminary investigation to correlate these properties with shear wave velocity was attempted. Cone penetration tests and a seismic test, using MudFork, were performed at a silty soil site near Incheon, Korea. Also, undisturbed samples were obtained using thin-wall tube samplers, and the shear wave velocities and undrained shear strengths of the samples were measured in the laboratory. A simple linear relationship between shear strength and shear wave velocity was obtained, and a tentative relationship between density and shear wave velocity was also defined.

최근에 벤더 엘리먼트를 이용한 현장탄성파 프로브(probe, MudFork로 명명됨)가 개발되어 정밀하고 수월하게 연약지반의 전단파 속도를 측정할 수 있게 되었다. 이 탄성파시험의 용도를 확장하고자 강성도 측정과 함께 전단강도와 밀도를 추정할 수 있는 상관관계를 시도하였다. 인천의 한 연약지반 현장에서 콘시험과 MudFork를 사용하여 현장탄성파시험을 수행하고, 시료를 채취하여 실내에서 삼축압축시험과 병행하여 공시체의 전단파 속도를 측정하였다. 이 결과로부터 연약지반의 전단강도와 전 단파속도의 상관관계와, 밀도와 전 단파속도의 상관관계를 정립하였다.

Keywords

References

  1. 목영진, 정재우, 오상훈, 김학성 (2008), "연약지반 강성측정을 위한 벤더 엘리먼트 프로브", 대한토목학회 논문집, 제28호, 제2C호, pp.125-131
  2. Bjerrum, L. (1972), "Embankment on Soft Ground", Proceedings of the ASCE Specialty Conference on Performance of Earth and Earth-Supported Structures, Purdue Univ., Vol.II, pp.1-54
  3. Bjerrum, L. (1973), "Problems of soil mechanics and construction on soft clays", Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Vol.3, pp.11-159
  4. Hardin, B.O., and Drnevich, V.P. (1972), "Shear Modulus and Damping in Soils : Design Equations and Curves", J. Soil Mech. Found. Div., ASCE, Vol.98, No. SM7, pp.667-692
  5. Hardin, B.O., and Black, W.L. (1969), "Closure to Vibration Modulus of Normally Consolidated Clays", J. Soil Mech. Found Div., ASCE, Vol.95, No. SM6, pp.1531-1537
  6. Jamiolkowski, M., Ladd, C. C., Germaine, J. T., and Lancellorra, R. (1985), "New developments on field and laboratory testing of soils", Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol.1, pp.57-153
  7. Kondner, R. L. (1963), "Hyperbolic Stress-Strain Response : Cohesive Soils", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.89, No.SMI, pp.115-143
  8. Ladd, C. C., Foott, R., Ishihara, K., Schlosser, F., and Poulos, H. G. (1977), "Stress-deformation and strength characteristics", Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, pp.421-494
  9. Lunne, T., and Kleven, A. (1982), "Role of CPT in North Sea Foundation Engineering", Norwegian Geotechnical Institute Publication #139
  10. Mayne, P. W., and Rix, G. J. (1993), "$G_{max}-q^c$ Relationships for clay", Geotech. Testing J., Vol.16(1), pp.54-60 https://doi.org/10.1520/GTJ10267J
  11. Richart, F. E. Jr. (1977), Dynamic Stress-Strain Relations for Soils, State of the Art Report, Proc. Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol.2, pp. 605-612
  12. Robertson, P. K., and Campanella, R. G. (1998), Guidelines for using the CPT, CPTU and Marchetti DMT for geotechnical design. U.S. Department of Transportation. Report No. FHWA-PA-87-022+ 84-24. Vol.2
  13. Simonini, P., and Cola, S. (2000), "Use of piezocone to predict maximum stiffness of Venetian soils", Journal of Geotechnical and Geoenviromental Engineering, ASCE, Vol.126(4), pp.378-382 https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(378)