• Title/Summary/Keyword: Sodium hydroxide solution

Search Result 304, Processing Time 0.03 seconds

Selection of Optimal Degradation Agents for Hydrolysis of Animal Cadavers (폐가축사체 가수분해를 위한 최적 가수분해제 선정)

  • Seo, Young-Jin;Seo, Dong-Cheol;Choi, Ik-Won;Kang, Se-Won;Lee, Sang-Gyu;Sung, Hwan-Hoo;Kim, Tae-Seung;Kim, Hyun-Goo;Park, Sun-Hwa;Kang, Seok-Jin;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.241-247
    • /
    • 2012
  • Many infectious diseases have emerged or re-emerged during the past 50 years in South Korea. There were three outbreaks of foot and mouth disease (FMD) in South Korea between January 2010 and March 2011. Over 3.45 million animals were slaughtered (33.3% of the existing pigs, 8.4% of dairy cows and 3.4% of cattle). To select optimal degradation agents of animal cadavers, degradation rates and fertilizer components of pig cadavers were investigated using hydrogen chloride (HCl), potassium hydroxide (KOH) and sodium hydroxide (NaOH) hydrolysis methods. Degradation rates of pig cadavers using HCl, KOH and NaOH were 81.1, 82.8 and 91.6%, respectively. Total nitrogen (T-N) concentration in degradation solution of pig cadavers using KOH hydrolysis method was higher than that in NaOH and HCl hydrolysis methods. Total phosphorus ($P_2O_5$) concentrations in degradation solution of pig cadavers in all hydrolysis methods ranged 0.14 ~ 0.28%. Total potassium ($K_2O$) concentration for KOH hydrolysis method was higher than that for other hydrolysis methods. The concentration of T-N and $K_2O$ in degradation solution of pig cadavers by KOH hydrolysis method were higher than that in NaOH and HCl hydrolysis methods. Thus, to recycle animal cadavers in agriculture, the optimal degradation agent for hydrolysis was KOH.

Nanostructured Hydroxyapatite for Biomedical Applications: From Powder to Bioceramic

  • Eslami, Hossein;Tahriri, Mohammadreza;Moztarzadeh, Fathollah;Bader, Rizwan;Tayebi, Lobat
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.597-607
    • /
    • 2018
  • In this study, a wet chemical method was used to synthesize nanostructured hydroxyapatite for biomedical applications. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials with a sodium hydroxide solution as an agent for pH adjustment. Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, differential thermal analysis, thermal gravimetric analysis, atomic absorption spectroscopy, and ethylenediaminetetraacetic acid (EDTA) titration analysis were used to characterize the synthesized powders. Having been uniaxially pressed, the powders formed a disk-like shape. The sinterability and electrical properties of the samples were examined, and the three-point bending test allowed for the measurement of their mechanical properties. Sedimentation analysis was used to analyze the slurry ability of hydroxyapatite. As in-vitro biological properties of the samples, biocompatibility and cytotoxicity were assessed using osteoblast-like cells and the L929 cell line, respectively. Solubility was assessed by employing a simulated body fluid.

The Effect of Dry Methods for Synthesized Yttria-doped Ceria by Co-precipitation (공침법으로 제조된 Yttira Doped Ceria분체의 건조방법에 따른 입자특성 고찰)

  • 변윤기;이상훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.798-803
    • /
    • 2003
  • In synthesis of nano powders, the hard agglomeration for the synthesized powders occurred during the drying processing. In order to avoid hard agglomeration in particles the freeze drying process was used in this experiment. e fabricated the Yttira-Doped Ceria(YDC) nano powder by co-precipitation. Starting materials used in experiments were the cerium(III) nitrate and yttrium(III) nitrate solution with 야-water, which two solutions were mixed and then the precipitated hydroxides were prepared for adding sodium hydroxide. The co-precipitated powders were dried by the thermal drying at 8$0^{\circ}C$ for 24 h and by freeze drying at -4$0^{\circ}C$, 30 mtorr for 72 h. The lattice parameter and crystallite size as a function of calcination temperature was characterized by XRD analysis. The lattice parameter of YDC was decreased with addition amount of yttrium and was estimated as 5.401683 $\AA$ at $700^{\circ}C$. Crystallite size were calculated by XRD-LB method, and morphologies were confirmed with the observation of TEM and SEM. The freeze dried YDC powders had medium diameter of 17 nm with more uniform size distribution than the thermal dried YDC posers, which were mainly ascribed to the difference of agglomerates formation during drying stage.

Mechanical and fracture properties of glass fiber reinforced geopolymer concrete

  • Midhuna, M.S.;Gunneswara Rao, T.D.;Chaitanya Srikrishna, T.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.29-45
    • /
    • 2018
  • This paper investigates the effect of inclusion of glass fibers on mechanical and fracture properties of binary blend geopolymer concrete produced by using fly ash and ground granulated blast furnace slag. To study the effect of glass fibers, the mix design parameters like binder content, alkaline solution/binder ratio, sodium hydroxide concentration and aggregate grading were kept constant. Four different volume fractions (0.1%, 0.2%, 0.3% and 0.4%) and two different lengths (6 mm, 13 mm) of glass fibers were considered in the present study. Three different notch-depth ratios (0.1, 0.2, and 0.3) were considered for determining the fracture properties. The test results indicated that the addition of glass fibers improved the flexural strength, split tensile strength, fracture energy, critical stress intensity factor and critical crack mouth opening displacement of geopolymer concrete. 13 mm fibers are found to be more effective than 6 mm fibers and the optimum dosage of glass fibers was found to be 0.3% (by volume of concrete). The study shows the enormous potential of glass fiber reinforced geopolymer concrete in structural applications.

Industrial Waters of Taegu City and on the Objection of Iron for Water Softening (大邱市의 工業用水와 鐵의 軟化障害에 關하여)

  • Lee, Dae-Soo;Hong, Soon-Yung
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.117-121
    • /
    • 1962
  • The waters throughout Taegu area for 87 points were analysed and according to the analytical data, following unfavorable characteristics for industrial uses were given: (1)Shows strong hardness, (2)Has high ratio of ignition residue to evaporation residue, (3) pH value is over 7, (4) Contains considerable quntities of iron.And then investigated the exchange rate and regeneration level of iron ion using cation exchange resin, Lewatit KS.When the hard water containing 2.2 ppm of iron with 18.4 ppm of calcium and 6.2 ppm of magnesium was passed through the ion exchange resin under $3cc/cm^2/min$ in exhaustant flow rate, exchange rate of iron reached to 42% after 300 hours flow. The exchange efficiency shows abrupt decreasing in initial stage of flow up to 100 hours flow. The exchanger which contains iron was regenerated with 10% sodium hydroxide aqua solution under SV (space velocity) 4. By this method, 57% of iron was eliminated from exchanger while calcium and magnesium are removed as much as 85% and 87% respectively.

  • PDF

Modification of Physicochemical Properties of Naked Barley Starch by Heat-Moisture Treatment (수분-열처리에 따른 쌀보리 전분의 물리화학적 성질)

  • Kang, Kil-Jin;Park, Yang-Kyun;Lho, Il-Hwan;Kim, Kwan;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.97-101
    • /
    • 1987
  • Physicochemical properties of heat-moisture (18, 21, 24 and 27%) treated naked barley (Youngsanbori) starch indicated that crystailinity of the starch was decreased upon treatment and water-binding capacity drastically increased as the moisture level increased. The swelling power was decreased, but the solubility increased by heat-moisture treatment. Apparent viscosity in aqueous sodium hydroxide solution was repressed as moisture-treatment level increased. Amylograph hot paste vicosities were decreased upon treatment except initial pasting temperature.

  • PDF

Modeling of Ammonia Mass Transfer Using a Hollow Fiber Membrane Contactor (중공사막 접촉기를 이용한 암모니아 물질전달 모델링)

  • Oh, Dae-Yang;Jeong, Joo-Young;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2011
  • Ammonia in water which is toxic to human, its concentration is regulated below 0.5 mg/L in drinking water. Current study aimed to develop appropriate models for ammonia stripping using hollow fiber membrane contactor. Two different models were developed during the study. Model 1 was assumed only free ammonia ($NH_3$) transfer in stripping process, whereas the Model 2 was assumed with total ammonia ($NH_3+{NH_4}^+$) transfer. Ammonium chloride ($NH_4CI$), sodium hydroxide(NaOH) were used to make ammonia solution, which was concentration of 25 mg as N/L at a pH of 10.5. The experimental conditions were such that, the liquid flow was in tube-side in upward direction and t he gas flow was on shell-side in downward direction a t room temperature. The experimental and modeling results showed that marginal difference were observed at low gas flux. However the difference between the both models and experimental value were increased when the gas flux was increased. The study concludes that the Model 1 with free ammonia is more appropriate when both models were compared and useful in ammonia stripping process at low gas flux.

STUDIES FOR THE CHARACTER OF NANO-SIZED $TiO_2$ PARTICLE SYNTHESIZED BY MICRO-EMULSION METHOD AND GOLD-DEPOSITED $TiO_2$ PARTICLE

  • Jhun, Hyun-Pyo;Park, Jae-Kiel;Lee, Kyoung-Chul;Park, Jae-Eon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.52-69
    • /
    • 1996
  • Nano-Sized TiO$_2$ particles with diameter between 2 and 5 nm are synthesized in Water/Triton X-100/n-Hexane microemulsion. Particles show the amorphous structure and partially hydroxide form. The optical absorbance of particles appears at 250nm and band edge at 340nm. Gold metal is deposited on the surface of TiO$_2$ particles by reduction reaction of Au(III) ion with sodium hypophosphite. The size of gold-deposited particles is 20nm, and the optical absorbance appears at 270nm and at 550nm. So particles show the red color. The dense precipitation is formed by aggregation in the TiO$_2$ nano-sized particles of about 5nm size. But the bulky precipitation is formed by agglomeration phenomena in the gold-deposited particles of 20nm size. And also gold-deposited particles is easily dispersed by being re-dispersed in PEG/Water solution. This study has compared those things measuring the SPF characteristics of the cosmetics made of the synthesized particles. If the particle size is controlled appropriately, then the SPF value will be higher, or more colorless cosmetics will be made.

  • PDF

Synthesis and Characterization of Zeolite Composite Membranes (I):Synthesis of ZSM-5 Type Zeolites (제올라이트 복합 분리막의 합성 및 특성화(I): ZSM-5계 제올라이트의 합성)

  • 현상훈;김준학;송재권
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1064-1072
    • /
    • 1996
  • The synthetic conditions and characteristics of ZSM-5 type zeolites (ZSM-5/silicalite) for the preparation of the zeolite composite membranes for gas separation were investigated. ZSM-5 zeolites could be synthesized by the hydrothermal treatment of the mixture of colloidal silica sol aluminum nitrate sodium hydroxide and TPABr at a temperature range of 150-17$0^{\circ}C$ in the autoclave. Silicalties were done from the solution of water glass water and TPABr. Their crystalline structures transformed from orthorhombic to monoclinic from and their pore structures of three-dimensional channels were opened as TPABr filling channels was burned off at the calcination temperature of 50$0^{\circ}C$. The specific surface area of the calcined zeolite was about 360 m3/g and its surface property was hydrophobic. Crystal sizes of ZSM-5 and silicalite were 0.5-1.0${\mu}{\textrm}{m}$ and 8-10${\mu}{\textrm}{m}$ respectively having no change due to the calcination. In particular the shape and the size of the ZSM-5 type zeolite were sensitively varied with silica sources and concentrations of reaction solutions/sols.

  • PDF

Fabrication and Oxidation Behaviors of Nickel-coated Aluminum Powders for Energetic Applications (에너제틱 응용을 위한 Ni코팅된 Al분말소재 제조 및 산화거동)

  • Kim, Kyung Tae;Woo, Jae Yeol;Yu, Ji Hun;Lee, Hye Moon;Lim, Tae Soo;Choi, Yoon Jeong;Kim, Chang Kee
    • Particle and aerosol research
    • /
    • v.10 no.4
    • /
    • pp.177-182
    • /
    • 2014
  • In this study, nickel-coated aluminum (Ni/Al) powders were synthesized for the utilization of energetic applications. Oxide materials present at the surface of Al powders of $45{\mu}m$ in averaged size were removed by using sodium hydroxide(NaOH) solution which is used for controlling pH. Nickel material is coated into the surface of oxide-removed Al powders by electroless-plating process. The microstructure of fabricated Ni/Al powders shows that nickel layers with a few hundreds nm were very homogeneously formed onto the surface of Al powders. The oxidation behavior of Ni/Al exihibit somewhat faster oxidation rate than that of pure Al with surface oxidation. Also, the higher exothermic reaction was observed from the Ni/Al powders. From the result of this, nickel coating is very promising method to obtain highly reactive and safe Al powders for energetic applications.