Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.6.10

Nanostructured Hydroxyapatite for Biomedical Applications: From Powder to Bioceramic  

Eslami, Hossein (Department of Biomedical Engineering, Meybod University)
Tahriri, Mohammadreza (Marquette University School of Dentistry)
Moztarzadeh, Fathollah (Faculty of Biomedical Engineering, Amirkabir University of Technology)
Bader, Rizwan (Marquette University School of Dentistry)
Tayebi, Lobat (Marquette University School of Dentistry)
Publication Information
Abstract
In this study, a wet chemical method was used to synthesize nanostructured hydroxyapatite for biomedical applications. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials with a sodium hydroxide solution as an agent for pH adjustment. Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, differential thermal analysis, thermal gravimetric analysis, atomic absorption spectroscopy, and ethylenediaminetetraacetic acid (EDTA) titration analysis were used to characterize the synthesized powders. Having been uniaxially pressed, the powders formed a disk-like shape. The sinterability and electrical properties of the samples were examined, and the three-point bending test allowed for the measurement of their mechanical properties. Sedimentation analysis was used to analyze the slurry ability of hydroxyapatite. As in-vitro biological properties of the samples, biocompatibility and cytotoxicity were assessed using osteoblast-like cells and the L929 cell line, respectively. Solubility was assessed by employing a simulated body fluid.
Keywords
Hydroxyapatite; Nanopowder; Bioceramic; Properties; In vitro;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Weiss, L. Obadia, D. Magne, X. Bourges, C. Rau, T. Weitkamp, I. Khairoun, J. Bouler, D. Chappard, and O. Gauthier, "Synchrotron X-ray Microtomography (on a Micron Scale) Provides Three-Dimensional Imaging Representation of Bone Ingrowth in Calcium Phosphate Biomaterials," Biomaterials, 24 [25] 4591-601 (2003).   DOI
2 E. Mavropoulos, A. M. Rossi, N. C. da Rocha, G. A. Soares, J. C. Moreira, and G. T. Moure, "Dissolution of Calcium- Deficient Hydroxyapatite Synthesized at Different Conditions," Mater. Charact., 50 [2-3] 203-7 (2003).   DOI
3 J. Gomez-Morales, J. Torrent-Burgues, T. Boix, J. Fraile, and R. Rodriguez-Clemente, "Precipitation of Stoichiometric Hydroxyapatite by a Continuous Method," Cryst. Res. Technol., 36 [1] 15-26 (2001).   DOI
4 T. Kokubo and H. Takadama, "How Useful is SBF in Predicting in vivo Bone Bioactivity?," Biomaterials, 27 [15] 2907-15 (2006).   DOI
5 H. Qu and M. Wei, "Effect of Fluorine Content on Mechanical Properties of Sintered Fluoridated Hydroxyapatite," Mater. Sci. Eng. C, 26 [1] 46-53 (2006).   DOI
6 M. Akao, H. Aoki, and K. Kato, "Mechanical Properties of Sintered Hydroxyapatite for Prosthetic Applications," J. Mater. Sci., 16 [3] 809-12 (1981).   DOI
7 M. M. Monteiro, N. C. C. da Rocha, A. M. Rossi, and G. de Almeida Soares, "Dissolution Properties of Calcium Phosphate Granules with Different Compositions in Simulated Body Fluid," J. Biomed. Mater. Res., Part A, 65 [2] 299-305 (2003).
8 A. Zamanian, F. Moztarzadeh, S. Kordestani, S. Hesaraki, and M. Tahriri, "Novel Calcium Hydroxide/Nanohydroxyapatite Composites for Dental Applications: in vitro Study," Adv. Appl. Ceram., 109 [7] 440-44 (2010).   DOI
9 M. Raz, F. Moztarzadeh, M. A. Shokrgozar, M. Azami, and M. Tahriri, "Development of Biomimetic Gelatin-Chitosan/Hydroxyapatite Nanocomposite via Double Diffusion Method for Biomedical Applications," Int. J. Mater. Res., 105 [5] 493-501 (2014).   DOI
10 M. Tahriri, M. Solati-Hashjin, and H. Eslami, "Synthesis and Characterization of Hydroxyapatite Nanocrystals via Chemical Precipitation Technique," Iran. J. Pharm. Sci., 4 [2] 127-34 (2008).
11 M. Tahriri, J. White, B. Shah, H. Eslami, and L. Tayebi, "Synthesis of Fluorine-Substituted Hydroxyapatite Nanopowders for Dental Applications," Dent. Mater., 32 e50-1 (2016).
12 F. Barandehfard, M. K. Rad, A. Hosseinnia, K. Khoshroo, M. Tahriri, H. Jazayeri, K. Moharamzadeh, and L. Tayebi, "The Addition of Synthesized Hydroxyapatite and Fluorapatite Nanoparticles to a Glass-Ionomer Cement for Dental Restoration and its Effects on Mechanical Properties," Ceram. Int., 42 [15] 17866-75 (2016).   DOI
13 M. Behroozibakhsh, F. Shafiei, T. Hooshmand, F. Moztarzadeh, M. Tahriri, and H. Bagheri, "Effect of a Synthetic Nanocrystalline-Fluorohydroxyapatite on the Eroded Enamel Lesions," Dent. Mater., 30 e117-18 (2014).
14 M. Tahriri, R. Bader, W. Yao, S. Dehghani, K. Khoshroo, M. Rasoulianboroujeni, and L. Tayebi, "Bioactive Glasses and Calcium Phosphates," pp. 7-24 in Biomaterials for Oral and Dental Tissue Engineering, Woodhead Publishing, 2018.
15 K. Fatehi, F. Moztarzadeh, M. Tahriri, K. Khoshroo, S. Heidari, and A. Sadeghi, "Biomimetic Synthesis, Characterization, and Adhesion Properties of Bone-like Apatite on Heat and Alkaline-Treated Titanium Alloy," Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 44 [10] 1535-40 (2014).   DOI
16 S. A. Poursamar, M. Rabiee, A. Samadikuchaksaraei, M. Tahriri, M. Karimi, and M. Azami, "Influence of the Value of the pH on the Preparation of Nano Hydroxyapatite Polyvinyl Alcohol Composites," J. Ceram. Process. Res., 10 [5] 679-82 (2009).
17 T. Hooshmand, A. Abrishamchian, F. Najafi, M. Mohammadi, H. Najafi, and M. Tahriri, "Development of Sol-Gel-Derived Multi-Wall Carbon Nanotube/Hydroxyapatite Nanocomposite Powders for Bone Substitution," J. Compos. Mater., 48 [4] 483-89 (2013).   DOI
18 F. S. Jazi, N. Parvin, M. Tahriri, M. Alizadeh, S. Abedini, and M. Alizadeh, "The Relationship between the Synthesis and Morphology of $SnO_2$-$Ag_2O$ Nanocomposite," Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 44 [5] 759-64 (2014).   DOI
19 M. Karimi, M. Rabiee, F. Moztarzadeh, M. Bodaghi, and M. Tahriri, "Ammonia-free Method for Synthesis of CdS Nanocrystalline Thin Films through Chemical Bath Deposition Technique," Solid State Commun., 149 [41-42] 1765-68 (2009).   DOI
20 E. Mohagheghpour, M. Rabiee, F. Moztarzadeh, M. Tahriri, M. Jafarbeglou, D. Bizari, and H. Eslami, "Controllable Synthesis, Characterization and Optical Properties of ZnS: Mn Nanoparticles as a Novel Biosensor," Mater. Sci. Eng., C, 29 [6] 1842-48 (2009).   DOI
21 N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, and L. Tayebi, "A Novel Electrochemical Biosensor Based on $Fe_3O_4$ Nanoparticles-Polyvinyl Alcohol Composite for Sensitive Detection of Glucose," Anal. Biochem., 519 19-26 (2017).   DOI
22 M. Tahriri and F. Moztarzadeh, "Preparation, Characterization, and in vitro Biological Evaluation of PLGA/Nano-Fluorohydroxyapatite (FHA) Microsphere-Sintered Scaffolds for Biomedical Applications," Appl. Biochem. Biotechnol., 172 [5] 2465-79 (2014).   DOI
23 K. Fatehi, F. Moztarzadeh, M. Solati-Hashjin, M. Tahriri, M. Rezvannia, and R. Ravarian, "In vitro Biomimetic Deposition of Apatite on Alkaline and Heat Treated Ti6A14V Alloy Surface," Bull. Mater. Sci., 31 [2] 101 (2008).   DOI
24 R. Touri, F. Moztarzadeh, Z. Sadeghian, D. Bizari, M. Tahriri, and M. Mozafari, "The Use of Carbon Nanotubes to Reinforce 45S5 Bioglass-Based Scaffolds for Tissue Engineering Applications," BioMed Res. Int., 2013 465086 (2013).
25 M. Ashuri, F. Moztarzadeh, N. Nezafati, A. A. Hamedani, and M. Tahriri, "Development of a Composite Based on Hydroxyapatite and Magnesium and Zinc-Containing Sol-Gel-Derived Bioactive Glass for Bone Substitute Applications," Mater. Sci. Eng., C, 32 [8] 2330-39 (2012).   DOI
26 M. Azami, F. Moztarzadeh, and M. Tahriri, "Preparation, Characterization and Mechanical Properties of Controlled Porous Gelatin/Hydroxyapatite Nanocomposite through Layer Solvent Casting Combined with Freeze-Drying and Lamination Techniques," J. Porous Mater., 17 [3] 313-20 (2010).   DOI
27 D. Bizari, F. Moztarzadeh, M. Rabiee, M. Tahriri, F. Banafatizadeh, A. Ansari, and K. Khoshroo, "Development of Biphasic Hydroxyapatite/Dicalcium Phosphate Dihydrate (DCPD) Bone Graft Using Polyurethane Foam Template: in vitro and in vivo Study," Advances in Applied Ceramics, 110 [7] 417-25 (2011).   DOI
28 H. Eslami, M. Solati-Hashjin, and M. Tahriri, "The Comparison of Powder Characteristics and Physicochemical, Mechanical and Biological Properties between Nanostructure Ceramics of Hydroxyapatite and Fluoridated Hydroxyapatite," Mater. Sci. Eng., C, 29 [4] 1387-98 (2009).   DOI
29 K. Fatehi, F. Moztarzadeh, M. Solati-Hashjin, M. Tahriri, M. Rezvannia, and A. Saboori, "Biomimetic Hydroxyapatite Coatings Deposited onto Heat and Alkali Treated Ti6Al4V Surface," Surf. Eng., 25 [8] 583-88 (2009).   DOI
30 M. Murray, J. Wang, C. Ponton, and P. Marquis, "An Improvement in Processing of Hydroxyapatite Ceramics," J. Mater. Sci., 30 [12] 3061-74 (1995).   DOI
31 M. Wei, J. Evans, T. Bostrom, and L. Grondahl, "Synthesis and Characterization of Hydroxyapatite, Fluoride-Substituted Hydroxyapatite and Fluorapatite," J. Mater. Sci.: Mater. Med., 14 [4] 311-20 (2003).   DOI
32 K. Ishikawa, P. Ducheyne, and S. Radin, "Determination of the Ca/P Ratio in Calcium-Deficient Hydroxyapatite Using X-ray Diffraction Analysis," J. Mater. Sci.: Mater. Med., 4 [2] 165-68 (1993).   DOI
33 Y. Chen and X. Miao, "Thermal and Chemical Stability of Fluorohydroxyapatite Ceramics with Different Fluorine Contents," Biomaterials, 26 [11] 1205-10 (2005).   DOI
34 P. Hartmann, C. Jäger, J. Vogel, and K. Meyer, "Solid State NMR, X-ray Diffraction, and Infrared Characterization of Local Structure in Heat-Treated Oxyhydroxyapatite Microcrystals: an Analog of the Thermal Decomposition of Hydroxyapatite during Plasma-Spray Procedure," J. Solid State Chem., 160 [2] 460-68 (2001).   DOI
35 M. Barsoum and M. W. Barsoum, Fundamentals of Ceramics; CRC press, 2002.
36 M. I. Kay, R. Young, and A. Posner, "Crystal Structure of Hydroxyapatite," Nature, 204 [4963] 1050-52 (1964).   DOI
37 K. A. Gross and L. M. Rodríguez-Lorenzo, "Sintered Hydroxyfluorapatites. Part I: Sintering Ability of Precipitated Solid Solution Powders," Biomaterials, 25 [7-8] 1375-84 (2004).   DOI
38 M. Komath and H. Varma, "Development of a Fully Injectable Calcium Phosphate Cement for Orthopedic and Dental Applications," Bull. Mater. Sci., 26 [4] 415-22 (2003).   DOI
39 L. Rodriguez-Lorenzo, J. Hart, and K. Gross, "Influence of Fluorine in the Synthesis of Apatites. Synthesis of Solid Solutions of Hydroxy-Fluorapatite," Biomaterials, 24 [21] 3777-85 (2003).   DOI
40 R. Ravarian, F. Moztarzadeh, M. S. Hashjin, S. Rabiee, P. Khoshakhlagh, and M. Tahriri, "Synthesis, Characterization and Bioactivity Investigation of Bioglass/Hydroxyapatite Composite," Ceram. Int., 36 [1] 291-97 (2010).   DOI
41 R. W. Rice, C. C. Wu, and F. Boichelt, "Hardness-Grain-Size Relations in Ceramics," J. Am. Ceram. Soc., 77 [10] 2539-53 (1994).   DOI
42 R. Verbeeck, H. Heiligers, F. Driessens, and H. Schaeken, "Effect of Dehydration of Calcium Hydroxylapatite on its Cell Parameters," Zeitschrift für Anorganische und allgemeine Chemie, 466 [1] 76-80 (1980).   DOI
43 M. Kikuchi, A. Yamazaki, M. Akao, and H. Aoki, "Thermal Changes in Synthetic Deuterioxyapatite," Mineral. J., 18 [3] 79-86 (1996).   DOI
44 P. Anderson and J. Elliott, "Subsurface Demineralization in Dental Enamel and Other Permeable Solids during Acid Dissolution," J. Dent. Res., 71 [8] 1473-81 (1992).   DOI
45 A. Krell and P. Blank, "Grain Size Dependence of Hardness in Dense Submicrometer Alumina," J. Am. Ceram. Soc., 78 [4] 1118-20 (1995).   DOI
46 T. P. Hoepfner and E. Case, "The Influence of the Microstructure on the Hardness of Sintered Hydroxyapatite," Ceram. Int., 29 [6] 699-706 (2003).   DOI
47 M. Kobune, A. Mineshige, S. Fujii, and H. Iida, "Preparation of Translucent Hydroxyapatite Ceramics by HIP and Their Physical Properties," J. Ceram. Soc. Jpn., 105 [1219] 210-13 (1997).   DOI
48 G. Muralithran and S. Ramesh, "The Effects of Sintering Temperature on the Properties of Hydroxyapatite," Ceram. Int., 26 [2] 221-30 (2000).   DOI
49 N. Thangamani, K. Chinnakali, and F. Gnanam, "The Effect of Powder Processing on Densification, Microstructure and Mechanical Properties of Hydroxyapatite," Ceram. Int., 28 [4] 355-62 (2002).   DOI
50 M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya, and J. Tanaka, "Self-Organization Mechanism in a Bone-like Hydroxyapatite/Collagen Nanocomposite Synthesized in vitro and its Biological Reaction in vivo," Biomaterials, 22 [13] 1705-11 (2001).   DOI
51 R. Schnettler, V. Alt, E. Dingeldein, H.-J. Pfefferle, O. Kilian, C. Meyer, C. Heiss, and S. Wenisch, "Bone Ingrowth in bFGF-Coated Hydroxyapatite Ceramic Implants, Biomaterials, 24 [25] 4603-8 (2003).   DOI
52 S.-C. Liou, S.-Y. Chen, and D.-M. Liu, "Synthesis and Characterization of Needlelike Apatitic Nanocomposite with Controlled Aspect Ratios," Biomaterials, 24 [22] 3981-88 (2003).   DOI
53 F. Jones, "Teeth and Bones: Applications of Surface Science to Dental Materials and Related Biomaterials," Surf. Sci. Rep., 42 [3-5] 75-205 (2001).   DOI
54 S. Bose and S. K. Saha, "Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique," Chem. Mater., 15 [23] 4464-69 (2003).   DOI
55 K. A. Gross and K. A. Bhadang, "Sintered Hydroxyfluorapatites. Part III: Sintering and Resultant Mechanical Properties of Sintered Blends of Hydroxyapatite and Fluorapatite," Biomaterials, 25 [7-8] 1395-405 (2004).   DOI