• Title/Summary/Keyword: Sod culture

Search Result 182, Processing Time 0.021 seconds

Induction of ${\beta}$-Glucosidase and ${\alpha}$-Rhammosidase of Bacteroides JY-6 by Flavonoid Glycosides (플라보노이드배당체에 의한 Bacteroides JY-6의 ${\beta}$-글루코시다제 및 ${\alpha}$-람노시다제의 유도)

  • Jang, Il-Sung;Park, Jong-Baek;Kim, Dong-Hyun
    • YAKHAK HOEJI
    • /
    • v.40 no.3
    • /
    • pp.335-339
    • /
    • 1996
  • Optimal medium for growth and glycosidases production of Bacteroides JY-6, an human intestinal bacterium, was general anaerobic medium or tryptic soy broth containing sod ium thioglycolate and ascorbic acid. By cocultivation of Staphylococcus R-48, Bacteroides JY-6 could be cultured in LB broth unable to culture JY-6. Heated Staphylococcus R-48 was also the inducer of the production of Bacteroides JY-6 glycosidases. These glycosidases were induced well by natural flavonoid glycosides, such as poncirin, naringin and rutin, but were not by synthetic substrates, p-nitrophenyl ${\beta$-D-glucopyranoside and p-nitrophenyl ${\alpha}$-L-rhanmopyranoside.

  • PDF

Lifespan Extension Property of Quercetin-3-O-${\beta}$-D-glucopyranoside-7-O-${\alpha}$-L-rhamnopyranoside from Curcuma longa L. In Caenorhabditis elegans (강황지하부 부산물에서 분리한 Quercetin-3-O-${\beta}$-D-glucopyranoside-7-O-${\alpha}$-L-rhamnopyranoside가 선충의 수명연장에 미치는 영향)

  • Ahn, Dalrae;Lee, Eun Byeol;Kim, Ban Ji;Lee, So Yeon;Ahn, Min-Sil;Eun, Jae Soon;Shin, Tae-Yong;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • After harvesting the medicinal parts of Curcuma longa, the remaining underground parts were discarded. From the remaining underground parts of Curcuma longa quercetin-3-O-${\beta}$-D-glucopyranoside-7-O-${\alpha}$-L-rhamnopyranoside (Q37) was isolated. The antioxidant activities in vitro and lifespan-extension effect of Q37 were elucidated using the Caenorhabditis elegans. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect of Q37 showed similar potent activities in comparison with vitamin C. Q37 also showed potent superoxide quenching activities as measured by the riboflavin- and xanthine-originated superoxide quenching activity tests. Q37 prolonged lifespan of worms under normal culture condition. In terms of protective effect of Q37 on the stress conditions such as thermal and oxidative stresses, Q37-treated worms exhibited enhanced survival rate, as compared to control worms. To know the possible mechanism of Q37-mediated increased lifespan and stress resistance of worms, we examined the activities of Q37on superoxide dismutase (SOD), and invested intracellular reactive oxygen species (ROS) levels. The results revealed that Q37 was able to elevate SOD activity of worms and reduce intracellular ROS accumulation in a dose-dependent manner.

Isolation, Identification, and Characterization of Aero-Adaptive Campylobacter jejuni

  • LEE YOUNG-DUCK;MOON BO-YOUN;CHOI JUNG-PIL;CHANG HAK-GIL;NOH BONG-SOO;PARK JONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.992-1000
    • /
    • 2005
  • Campylobacter is one of the emerging foodborne pathogens, and its worldwide incidence rate is extremely high. This study was undertaken to isolate and identify Campylobacter strains from chicken carcasses in the local markets, and analyze their characteristics regarding oxygen tolerance. They were isolated after aerobic enrichment and identified by biochemical, physiological, and morphological characteristics, PCR, and 16S rDNA sequencing. Their oxygen tolerances were analyzed in terms of the cell surface hydrophobicity, cell fatty acid composition, and oxidoreductase. Five strains of C. jejuni were isolated and identified from 61 isolates from 50 chickens. Among them, C. jejuni IC21 grew well in Brucella broth and commercial milk under aerobic condition. However, in the aerobic exposure, the cell surface hydrophobicity of C. jejuni IC21 was almost the same as the other isolates, even though its morphology changed from the spiral-bacilli form into the coccoid form. Fatty acid analyses showed that all Campylobacter strains had a high composition of $C_{19:1}$, cyclopropane fatty acid, and that the amount of the other fatty acids were very similar between them. Interestingly, however, only oxidoreductase activities of C. jejuni IC21 increased highly under aerobic exposure even though its activities were almost the same as the other C. jejuni strains just after microaerobic culture. It had 11.8 times higher catalase activity, 4.4 times higher for SOD, and 2.0 times higher for NADH oxidase activities. Therefore, in the case of the aero-adaptive C. jejuni IC21, expression of oxidoreductase significantly increased under oxidative stressed condition, which might allow it to survive for a longer time and grow on food under aerobic exposure. Such new strain might be one of the explanations for the increase of campylobacteriosis.

Gene Expression Profiling of Eukaryotic Microalga, Haematococcus pluvialis

  • EOM HYUNSUK;PARK SEUNGHYE;LEE CHOUL-GYUN;JIN EONSEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1060-1066
    • /
    • 2005
  • Under environmental stress, such as strong irradiance or nitrogen deficiency, unicellular green algae of the genus Haematococcus accumulate secondary carotenoids, i.e. astaxanthin, in the cytosol. The induction and regulation of astaxanthin biosynthesis in microalgae has recently received considerable attention owing to the increasing use of secondary carotenoids as a source of pigmentation for fish aquacultures, and as a potential drug in cancer prevention as a free-radical quencher. Accordingly, this study generated expressed sequence tags (ESTs) from a library constructed from astaxanthin-induced Haematococcus pluvialis. Partial sequences were obtained from the 5' ends of 1,858 individual cDNAs, and then grouped into 1,025 non-overlapping sequences, among which 708 sequences were singletons, while the remainder fell into 317 clusters. Approximately $63\%$ of the EST sequences showed similarity to previously described sequences in public databases. H. pluvialis was found to consist of a relatively high percentage of genes involved in genetic information processing ($15\%$) and metabolism ($11\%$), whereas a relatively low percentage of sequences was involved in the signal transduction ($3\%$), structure ($2\%$), and environmental information process ($3\%$). In addition, a relatively large fraction of H. pluvialis sequences was classified as genes involved in photosynthesis ($9\%$) and cellular process ($9\%$). Based on this EST analysis, the full-length cDNA sequence for superoxide dismutase (SOD) of H. pluvialis was cloned, and the expression of this gene was investigated. The abundance of SOD changed substantially in response to different culture conditions, indicating the possible regulation of this gene in H. pluvialis.

Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

  • Wang, Lan;Xu, Ming Lu;Liu, Jie;Wang, You;Hu, Jian He;Wang, Myeong-Hyeon
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.579-585
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS: An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS: Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and the anti-inflammatory cytokines IL-$1{\beta}$ and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS: Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress.

A WblA-Binding Protein, SpiA, Involved in Streptomyces Oxidative Stress Response

  • Kim, Jin-Su;Lee, Han-Na;Lee, Heung-Shick;Kim, Pil;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1365-1371
    • /
    • 2013
  • The Streptomyces coelicolor wblA gene is known to play a negative role in both antibiotic biosynthesis and the expression of genes responding to oxidative stress. Recently, WhcA, a WblA ortholog protein, was confirmed to interact with dioxygenase-encoding SpiA ($\underline{s}$tress $\underline{p}$rotein $\underline{i}$nteracting with Whc$\underline{A}$) in Corynebacterium glutamicum. We describe here the identification of a SpiA ortholog SCO2553 protein ($SpiA_{sc}$) that interacts with WblA in S. coelicolor. Using heterologous expression in E. coli and in vitro pull-down assays, we show that WblA specifically binds $SpiA_{sc}$, and is influenced by oxidants such as diamide. These data indicate that the interaction between WblA and $SpiA_{sc}$ is not only specific but also modulated by the redox status of the cell. Moreover, a $spiA_{sc}$-disruption mutant exhibited a less sensitive response to the oxidative stress induced by diamide present in solid plate culture. Real-time RT-PCR analysis also showed that transcription levels of oxidative stress response genes (sodF, sodF2, and trxB) were higher in the $spiA_{sc}$-deletion mutant than in wild-type S. coelicolor. These results show that $SpiA_{sc}$ negatively regulates WblA during oxidative stress responses in S. coelicolor.

Enhancement of Drought-Stress Tolerance of Brassica oleracea var. italica L. by Newly Isolated Variovorax sp. YNA59

  • Kim, Yu-Na;Khan, Muhammad Aaqil;Kang, Sang-Mo;Hamayun, Muhammad;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1500-1509
    • /
    • 2020
  • Drought is a major abiotic factor and has drastically reduced crop yield globally, thus damaging the agricultural industry. Drought stress decreases crop productivity by negatively affecting crop morphological, physiological, and biochemical factors. The use of drought tolerant bacteria improves agricultural productivity by counteracting the negative effects of drought stress on crops. In this study, we isolated bacteria from the rhizosphere of broccoli field located in Daehaw-myeon, Republic of Korea. Sixty bacterial isolates were screened for their growth-promoting capacity, in vitro abscisic acid (ABA), and sugar production activities. Among these, bacterial isolates YNA59 was selected based on their plant growth-promoting bacteria traits, ABA, and sugar production activities. Isolate YNA59 highly tolerated oxidative stress, including hydrogen peroxide (H2O2) and produces superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities in the culture broth. YNA59 treatment on broccoli significantly enhanced plant growth attributes, chlorophyll content, and moisture content under drought stress conditions. Under drought stress, the endogenous levels of ABA, jasmonic acid (JA), and salicylic acid (SA) increased; however, inoculation of YNA59 markedly reduced ABA (877 ± 22 ng/g) and JA (169.36 ± 20.74 ng/g) content, while it enhanced SA levels (176.55 ± 9.58 ng/g). Antioxidant analysis showed that the bacterial isolate YNA59 inoculated into broccoli plants contained significantly higher levels of SOD, CAT, and APX, with a decrease in GPX levels. The bacterial isolate YNA59 was therefore identified as Variovorax sp. YNA59. Our current findings suggest that newly isolated drought tolerant rhizospheric Variovorax sp. YNA59 is a useful stress-evading rhizobacterium that improved drought-stress tolerance of broccoli and could be used as a bio-fertilizer under drought conditions.

The Longevity Properties of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose from Curcuma longa in Caenorhabditis elegans

  • Ahn, Dalrae;Cha, Dong Seok;Lee, Eun Byeol;Kim, Ban Ji;Lee, So Yeon;Jeon, Hoon;Ahn, Min-Sil;Lim, Hye Won;Lee, Heon Yong;Kim, Dae Keun
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.442-446
    • /
    • 2013
  • Here in this study, we isolated 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose (PGG) from Curcuma longa L. and elucidated the lifespan-extending effect of PGG using Caenorhabditis elegans model system. In the present study, PGG demonstrated potent lifespan extension of worms under normal culture condition. Then, we determined the protective effects of PGG on the stress conditions such as thermal and oxidative stress. In the case of heat stress, PGG-treated worms exhibited enhanced survival rate, compared to control worms. In addition, PGG-fed worms lived longer than control worms under oxidative stress induced by paraquat. To verify the possible mechanism of PGG-mediated increased lifespan and stress resistance of worms, we investigated whether PGG might alter superoxide dismutase (SOD) activities and intracellular ROS levels. Our results showed that PGG was able to elevate SOD activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner.

Effects of Light on Activities of Antioxidative Enzymes in Hairy Root Cultures of phytolacca esculenta Houtte (자리공(Phytolacca esculenta van Houtte) 모상근배양에서 항산화효소의 활성에 미치는 광의 영향)

  • 양덕조;김용해;권진이;최철희;양덕춘
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.2
    • /
    • pp.71-76
    • /
    • 1995
  • The effects of light on the activities of several antioxidative enzymes, catalase (CAT), superoxide dismutase(SOD), ascorbate oxidase(AO), and peroxidase(POD) were examined in the hairy root cultures of Phytolacca esculenta van Houtte induced by Agrobacterium tumefaciens $A_4$T. Activities of CAT, SOD, and AO were significantly decreased with incresing light intensity (500-2,000 lx). The activity of AO under high light condition (2,000 lx)was decreased by 92% compared to the dark condition. The activities of glutathoine peroxidase (GPO), ascorbate peroxidase (APO) and general POD were increased under lower light intensify below 500 lx. The activity of GPO under 2,000 lx was decreased by 85% compared to the dark condition. The activities of antioxidative enzymes were more decreased in blue light (400-500nm). The activities of antioxidative enzymes in blue light intensity were increased in lower light intensity below 30 lx, but decreased 21-70% under 200 lx. The activity of AO was decreased by 70% under 200 lx with increasing blue light intensity. Our results suggest that the activities of antioxidative enzymes in hairy roots might be inhibited by endogenous oxidants generated under the high blue light conditions.

  • PDF

Protective Effect of Bupleuri Radix on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil (PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 시호 세포보호효과)

  • 최삼열;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.113-124
    • /
    • 2002
  • Objects: This research was conducted to investigate the protective effect of Bupleuri Radix against ischemic damage using PC12 cells and global ischemia in gerbils, Methods: To observe the protective effect of Bupleuri Radixon ischemic damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Bupleuri Radix during ischemic damage. Gerbils were divided into three groups: a normal group, a 5-minute two-vessel occlusion (2VO) group and a Bupleun Radix administered group after 2VO. The CCAs were occluded by microclip for 5 minutes, Bupleuri Radix was administered orally for 7 days after 2VO. Histological analysis was performed on the 7th day. For histological analysis, the brain tissue was stained with 1 % of cresyl violet solution. Results: 1. Bupleuri Radix has a protective effect against ischemia in the CA1 area of the gerbil's hippocampus 7 days after 5-minute occlusion. 2. In the hypoxia/reperfusion model using PC12 cells, the Bupleuri Radix has a protective effect against ischemia in the dose of 0.2{\;}\mu\textrm{g}/ml,2{\;}\mu\textrm{g}/ml{\;}and{\;} 20{\;}\mu\textrm{g}/ml$. 3. Bupleuri Radix increased the activities of glutathione peroxidase and catalase. 4. The increased activity of superoxidedismutase (SOD) by ischemic damage might have been induced as an act of self-protection. This study suggests that Bupleuri Radix has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils. Bupleuri Radix also has protective effect on a hypoxia/reperfusion cell culture model using PC12 cells. Conclusions: Bupleuri Radix has protective effect against ischemic brain damage during the early stages of ischemia.

  • PDF