Browse > Article

Isolation, Identification, and Characterization of Aero-Adaptive Campylobacter jejuni  

LEE YOUNG-DUCK (Department of Food and Bioengineering, Kyungwon University)
MOON BO-YOUN (Department of Food and Bioengineering, Kyungwon University)
CHOI JUNG-PIL (Department of Food and Bioengineering, Kyungwon University)
CHANG HAK-GIL (Department of Food and Bioengineering, Kyungwon University)
NOH BONG-SOO (Department of Food Science, Seoul Women's University)
PARK JONG-HYUN (Department of Food and Bioengineering, Kyungwon University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.5, 2005 , pp. 992-1000 More about this Journal
Abstract
Campylobacter is one of the emerging foodborne pathogens, and its worldwide incidence rate is extremely high. This study was undertaken to isolate and identify Campylobacter strains from chicken carcasses in the local markets, and analyze their characteristics regarding oxygen tolerance. They were isolated after aerobic enrichment and identified by biochemical, physiological, and morphological characteristics, PCR, and 16S rDNA sequencing. Their oxygen tolerances were analyzed in terms of the cell surface hydrophobicity, cell fatty acid composition, and oxidoreductase. Five strains of C. jejuni were isolated and identified from 61 isolates from 50 chickens. Among them, C. jejuni IC21 grew well in Brucella broth and commercial milk under aerobic condition. However, in the aerobic exposure, the cell surface hydrophobicity of C. jejuni IC21 was almost the same as the other isolates, even though its morphology changed from the spiral-bacilli form into the coccoid form. Fatty acid analyses showed that all Campylobacter strains had a high composition of $C_{19:1}$, cyclopropane fatty acid, and that the amount of the other fatty acids were very similar between them. Interestingly, however, only oxidoreductase activities of C. jejuni IC21 increased highly under aerobic exposure even though its activities were almost the same as the other C. jejuni strains just after microaerobic culture. It had 11.8 times higher catalase activity, 4.4 times higher for SOD, and 2.0 times higher for NADH oxidase activities. Therefore, in the case of the aero-adaptive C. jejuni IC21, expression of oxidoreductase significantly increased under oxidative stressed condition, which might allow it to survive for a longer time and grow on food under aerobic exposure. Such new strain might be one of the explanations for the increase of campylobacteriosis.
Keywords
Campylobacter jejuni; aerobic growth; oxidoreductases; SOD; catalase;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Cappelier, J. M., C. Magras, J. L. Jouve, and M. Federighi. 1999. Recovery of viable but non-culturable Campylobacter jejuni cells in two animal models. Food Microbiol. 16: 375-383   DOI   ScienceOn
2 Kelly, A. F., S. F. Park, R. Bovill, and B. M. Mackey. 2001. The survival of Campylobacter jejuni during stationary phase: Evidence for the absence of a phenotypic stationary phase response in C. jejuni. Appl. Environ. Microbiol. 67: 2248-2254   DOI   ScienceOn
3 Kell, D. B. and M. Young. 2000. Bacterial dormancy and culturability: The role of autocrine growth factors: Commentary. Curr. Opin. Microbiol. 3: 238-243   DOI   ScienceOn
4 Kim, N. K., J. C. Yoo, H. K. Park, T. R. Hae, and J. S. So. 1998. The relationship between cell surface hydrophobicity (CSH) and stress tolerance in Bifidobacterium spp. Food Sci. Biotechnol. 7: 66-70
5 Lascelles, J. and K. M. Calder. 1985. Participation of cytochromes in some oxidation-reduction systems In Campylobacter fetus. J. Bacteriol. 164: 401-409
6 Lemke, M. J., P. F. Churchill, and R. G. Wetzel. 1995. Effect of substrate and cell surface hydrophobicity on phosphate utilization in bacteria. Appl. Env. Microbiol. 61: 913-919
7 Marshall, S. M., P. L. Melito, D. L. Woodward, W. M. Johnson, F. G. Rodgers, and M. R. Mulvey. 1999. Rapid identification of Campylobacter, Arcobacter, and Helicobacter isolates by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene. J. Clin. Microbiol. 37: 4158-4160
8 Rhee, J. E., H. M. Ju, U. R. Park, B. Ch. Park, and S. H. Choi. 2004. Identification of the Vibrio vulnificus cadC and evaluation of its role in acid tolerance. J. Microbiol. Biotechnol. 14: 1093-1098
9 Shin, S. Y. and J. H. Park. 1998. Changes of oxidative stress enzymes and fatty acid composition of Bifidobacterium adolscentis and B. longum under anaerobic and aerated conditions. Kor. J. Appl. Microbiol. Biotechnol. 26: 7-14
10 Van Loosderecht, M. C. M., J. Lyklema, W. Norde, G. Schraa, and A. J. B. Zehnder. 1987. The role of bacterial cell wall hydrophobicity in adhesion. Appl. Envir. Microbiol. 53: 1893-1897
11 Yousef, A. E. and V. K. Juneja. 2003. Microbial Stress Adaptation and Food Safety, pp. 303-351. CRC Press, Inc. Boca Raton, Florida, U.S.A
12 Dominguez, C., I. Gomez, and J. Zumalacarregui. 2002. Prevalence of Salmonella and Campylobacter in retail chicken meat in spain. Int. J. Food Microbiol. 72: 165-168   DOI   PUBMED   ScienceOn
13 On, S. L. W. 2001. Taxonomy of Campylobacter, Arcabacter, Helicobacter and related bacteria: Current status, future prospects and immediate concern. J. Appl. Microbiol. 90: 1S-15S   DOI
14 Lopez de Felipe, F. and J. Hugenholtz. 2001. Purification and characterisation of the water forming NADH-oxidase from Lactococcus lactis. Int. J. Dairy 11: 37-44   DOI   ScienceOn
15 Giesendorf, B. A. J., W. G. V. Quint, M. H. C. Henkens, H. Stegement, F. A. Huf, and H. G. M. Niesters. 1992. Rapid and sensitivity detection of Campylobacter spp. in chicken products by using the polymerase chain reaction. Appl. Env. Microbiol. 58: 3804-3808
16 MacCord, J. and I. Fridovich. 1988. The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by variety of electron carriers. J. Biol. Chem. 254: 1374
17 Tholozan, J. L., J. M. Cappelier, J. P. Tissier, G. Delattre, and M. Federrichi. 1999. Physiological characterization of viable but nonculturable Campylobacter jejuni cells. Appl. Envir. Microbiol. 65: 111-1116
18 McDougald, D., S. A. Rice, D. Weichart, and S. Kjelleberg. 1998. Nonculturability: Adaptation or debilitation? FEMS Microbiol. Ecol. 25: 1-9   DOI   ScienceOn
19 Nachamkin, I. 2002. Chronic effects of Campylobacter infection. Microbes Infect. 4: 399-403   DOI   ScienceOn
20 Blaser, M. J., H. L. Hardesty, B. Powers, and W. L. Wang. 1980. Survival of Campylobacter fetus subsp. jejuni in biological milieus. J. Clin. Microbiol. 27: 309
21 Parkhill, J., B. W. Wren, K. Mungall, J. M. Ketley, C. Churcher, D. Basham, T. Davies, R. M. Chillingworth, T. Feltwell, S. Holroyd, K. Jagels, A. V. Karlyshev, S. Moule, M. J. Pallen, C. W. Penn, M. A. Quail, M. A. Rajandream, K. M. Rutherford, A. H. van Vliet, S. Whitehead, and B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665-668   DOI   ScienceOn
22 Ahn, J. B., K. Y. Kim, and J. H. Park. 1998. Isolation and characterization of oxygen-tolerant mutant of Bifidobacterium longum. Kor. J. Appl. Microbiol. Biotechnol. 26: 476-482
23 Arnoud, H. M. V., M. K. Julian, S. F. Park, and W. P. Charles. 2002. The role of iron in Campylobacter gene regulation, metabolism and oxidative stress defense. FEMS Microbiol. Rev. 26: 173-186   DOI
24 Beers, R. F. and I. W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140
25 Centers for Disease Control and Prevention. 2001. Diagnosis and management of foodborne illnesses. Recommendations and Reports 50: 1-69
26 Chynoweth, R. W., J. A. Hudson, and K. Thom. 1998. Aerobic growth and survival of Campylobacter jejuni in food and stream water. Lett. Appl. Microbiol. 27: 341-344   DOI   ScienceOn
27 Reezal, A., B. McNeil, and J. G. Anderson. 1998. Effect of low-osmolality nutrient media on growth and culturability of Campylobacter species. Appl. Envir. Microbiol. 64: 4643-4649
28 Park, S. F. 2002. The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int. J. Food Microbiol. 74: 177-188   DOI   PUBMED   ScienceOn
29 Frost, J. A. 2001. Current epidemiological issues in human campylobacteriosis. J. Appl. Microbiol. 90: 85S-95S   DOI
30 Jones, D. M., E. M. Sutcliffe, R. Rios, A. J. Fox, and A. Curry. 1993. Campylobacter jejuni adapts to aerobic metabolism in the environment. J. Med. Microbiol. 38: 145-150   DOI   ScienceOn
31 Smith, M. A., M. Finel, V. Korolik, and G. L. Mendz. 2000. Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch. Microbiol. 174: 1-10   DOI   PUBMED
32 Tran, T. T. 1998. A blood-free enrichment medium for growing Campylobacter spp. under aerobic conditions. Lett. Appl. Microbiol. 26: 145-148   DOI   PUBMED   ScienceOn
33 Park, K. J., S. H. Kim, M. G. Kim, D. H. Chung, S. D. Ha, K. S. Kim, D. J. Jahng, and K. H. Lee. 2004. Functional complementation of Escherichia coli by the rpoS gene of the foodborne pathogenic Vibrio vulnificus. J. Microbiol. Biotechnol. 14: 1063-1066
34 Shin, S. Y., J. H. Park, and W. J. Kim. 1999. Specific detection of enteropathogen Campylobacter jejuni in food using a polymerase chain reaction. J. Microbiol. Biotechnol. 9: 184-190
35 Rosenquist, H., N. L. Nielsen, H. M. Sommer, B. Norrung, and B. B. Christensen. 2003. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food Microbiol. 83: 87-103   DOI   ScienceOn
36 Cho, S. Y., B. K. Park, K. D. Moon, and D. H. Oh. 2004. Prevalence of listeria monocytogenes and related species in minimally processed vegetables. J. Microbiol. Biotechnol. 14: 515-519
37 Food and drug administration. 1995. Bacteriological Analytical Manual, 8th ed., AOAC International, Maryland, U.S.A