• Title/Summary/Keyword: Snow Accretion

Search Result 7, Processing Time 0.018 seconds

Fuzzy Rulebase Application for Estimation of Snow Accretion on Power Lines and Deicing Countermeasure Plan (퍼지 룰베이스에 의한 전선착설 예측 및 대책 지원 기법)

  • 최규형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.782-788
    • /
    • 2003
  • Making deicing countermeasure plan against snow accretion on power line is a very complicated problem, which should take into account both the possibility of accidents due to snow accretion on power line and the stable operation of power system. As knowledge engineering can be a good solution to this field of problems, a prototype expert system to assist power system operators in forecasting snow accretion on power lines and making a list of all the feasible and effective deicing countermeasures has been developed. The system has been remodelled into a fuzzy expert system by adopting fuzzy rulebase and fuzzy inference method to systematically process the fuzziness included in the heuristic knowledges. Simulation results based on the past snow accretion accident data show that the proposed system is very promising.

Knowledge Engineering Method Ie Estimation of Snow Accretion on Power lines and Decision of Deicing Countermeasures (지식공학에 의한 전선 착설 예측 및 대책 결정 기법)

  • 최규형
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.95-102
    • /
    • 2003
  • To Prevent the damage of power system facilities by snow accretion on transmission lines, a prototype expert system has been developed. The system has the basic functions of forecasting snow accretion on transmission lines and making a list of all feasible and effective deicing countermeasures to assist power system operators. As estimating of snow accretion on power lines and making countermeasure plans are very difficult to solve analytically, knowledge engineering can be an effective method for this problem. The heuristics about the effect of weather conditions on the snow accretion process on power lines and power system operation for the deicing constitutes main nile base. Simulation results based on past snow accretion accident data show that the proposed system is very premising.

Export System Approach for Snow Accretion on Transmission Lines (전문가시스템에 의한 전선착설예측)

  • Choi, Kyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.193-195
    • /
    • 1992
  • Snow accretion on transmission lines may cause critical accidents such as sleet jump, tower collpases, etc,. In order to assist power system operators to prevent thses accidents, aprototype expert system had been developed. The system has basic functions of forecasting snow accretion on transmission lines and making a list of all feasible and effective deicing countermeasures. The knowledge of the effect of weather conditions on the snow accretion process continue main rule base. Simulation results show that the proposed system is very promising.

  • PDF

Application Examples of CFD at the Planning Stage of High-Rise Buildings

  • Hiroto, Kataoka;Yoshiyuki, Ono;Kota, Enoki;Yuichi, Tabata;Satoko, Kinashi
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.145-156
    • /
    • 2022
  • Application examples of computational fluid dynamics (CFD) in the planning stage of high-rise buildings are introduced. First, we introduce examples of applications in the environmental field. The pedestrian wind environment was one of the earliest practical examples of CFD. CFD was also employed to validate the heat island mitigation measures proposed as part of the new construction plan. Second, application examples of wind-force evaluations are introduced. Prediction examples are presented for the peak wind pressure around a complex-shaped building and the wind force evaluation for a base-isolated building. The results prove that the results of the proper execution of CFD are equivalent to those of the wind tunnel experiment. As examples of CFD applications of other issues related to high-rise building planning, we introduce snow accretion on outer walls and high-temperature exhaust from emergency generators. Finally, the future prospects for the use of CFD are discussed.

Optimization of the anti-snow performance of a high-speed train based on passive flow control

  • Gao, Guangjun;Tian, Zhen;Wang, Jiabin;Zhang, Yan;Su, Xinchao;Zhang, Jie
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.325-338
    • /
    • 2020
  • In this paper, the improvement of the anti-snow performance of a high-speed train (HST) is studied using the unsteady Reynolds-Averaged Navier-Stokes simulations (URANS) coupled with the Discrete Phase Model (DPM). The influences of the proposed flow control scheme on the velocity distribution of the airflow and snow particles, snow concentration level and accumulated mass in the bogie cavities are analyzed. The results show that the front anti-snow structures can effectively deflect downward the airflow and snow particles at the entrance of the cavities and alleviate the strong impact on the bogie bottom, thereby decrease the local accumulated snow. The rotational rear plates with the deflecting angle of 45° are found to present well deflecting effect on the particles' trajectories and force more snow to flow out of the cavities, and thus significantly reduce the accretion distribution on the bogie top. Furthermore, running speeds of HST are shown to have a great effect on the snow-resistance capability of the flow control scheme. The proposed flow control scheme achieves more snow reduction for HST at higher train's running speed in the cold regions.

Temporal Prediction of Ice Accretion Using Reduced-order Modeling (차원축소모델을 활용한 시간에 따른 착빙 형상 예측 연구)

  • Kang, Yu-Eop;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • The accumulated ice and snow during the operation of aircraft and railway vehicles can degrade aerodynamic performance or damage the major components of vehicles. Therefore, it is crucial to predict the temporal growth of ice for operational safety. Numerical simulation of ice is widely used owing to the fact that it is economically cheaper and free from similarity problems compared to experimental methods. However, numerical simulation of ice generally divides the analysis into multi-step and assumes the quasi-steady assumption that considers every time step as steady state. Although this method enables efficient analysis, it has a disadvantage in that it cannot track continuous ice evolution. The purpose of this study is to construct a surrogate model that can predict the temporal evolution of ice shape using reduced-order modeling. Reduced-order modeling technique was validated for various ice shape generated under 100 different icing conditions, and the effect of the number of training data and the icing conditions on the prediction error of model was analyzed.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.