• Title/Summary/Keyword: SnS

Search Result 1,943, Processing Time 0.026 seconds

SNS에 나타나는 이미지 표현에 대한 연구 : 미투데이(me2day)와 페이스북(facebook)을 중심으로

  • Ham, Jae-Min
    • 한국만화애니메이션학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.23-30
    • /
    • 2011
  • 지금, 세계는 바야흐로 'Social Network Service(이하 SNS)의 시대' 이다. SNS란 '일련의 관계에 의해 모인 사람들 간의 관계망을 특정 체계를 통해 대중에게 제공하는 것' 이라고 할 수 있다. 과거 향우회, 동문회처럼 오프라인에서 존재했던 이러한 관계망이 온라인으로 도입된 것이 현재 SNS라고 일컫는 서비스이다. SNS가 큰 인기를 끌고 정보 사회가 발전함에 따라 SNS의 서비스와 형태도 점차 다양해져 왔다. 특히나 그림 영상 등의 시각적인 요소를 사용한 의사소통과 정보의 공유가 과거 그 어떤 매체보다도 손쉽고 빠르게 이루어지고 있다. 인간의 거의 모든 문화 사회적 활동에 컴퓨터가 기반이 됨으로써, 우리는 점차 텍스트, 사진, 영화, 음악, 가상환경 등과 같은 문화 데이터와 더욱 밀접한 관계에 놓이게 되었으며 이것은 SNS에서도 예외가 아니다. 우리는 더 이상 컴퓨터를 마주하는 것이 아니라 디지털 형식으로 기호화된 문화와 마주하고 있으며, 그 중심에는 시각적인 요소들, 즉 '이미지'가 있다. 이러한 점에 착안하여 본 연구는 'SNS'와 그 이미지들의 특성에 대한 이해를 선행한 뒤, 최근 국내에서 가장 활발한 성장세를 나타내고 있는 SNS인 미투데이 페이스북 이상의 두 서비스의 사례를 분석할 것이다. SNS의 이미지의 정체성, 이미지 표현의 특징과 양상이 어떠한지를 분석하고 SNS에서 사용되는 이미지와 그 의미를 보다 심층적인 관점에서 이해해 보는 것은 SNS를 중심으로 형성되어 있는 관련 업계와 학계에 유의미한 내용을 제공할 것으로 기대된다.

  • PDF

SnS (tin monosulfide) thin films obtained by atomic layer deposition (ALD)

  • Hu, Weiguang;Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.305.2-305.2
    • /
    • 2016
  • Tin monosulfide (SnS) is one promising candidate absorber material which replace the current technology based on cadmium telluride (CdTe) and copper indium gallium sulfide selenide (CIGS) for its suitable optical band gap, high absorption coefficient, earth-abundant, non-toxic and cost-effective. During past years work, thin film solar cells based on SnS films had been improved to 4.36% certified efficiency. In this study, Tin monosul fide was obtained by atomic layer deposition (ALD) using the reaction of Tetrakis (dimethylamino) tin (TDMASn, [(CH3)2N]4Sn) and hydrogen sulfide (H2S) at low temperatures (100 to 200 oC). The direct optical band gap and strong optical absorption of SnS films were observed throughout the Ultraviolet visible spectroscopy (UV VIS), and the properties of SnS films were analyzed by sanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).

  • PDF

Structural and Optical Properties of SnS Thin Films Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 제조한 SnS 박막의 구조적 및 광학적 특성)

  • Hwang, Donghyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.126-132
    • /
    • 2018
  • SnS thin films with different substrate temperatures ($150 {\sim}300^{\circ}C$) as process parameters were grown on soda-lime glass substrates by RF magnetron sputtering. The effects of substrate temperature on the structural and optical properties of SnS thin films were investigated by X-ray diffraction (XRD), Raman spectroscopy (Raman), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and Ultraviolet-visible-near infrared spectrophotometer (UV-Vis-NIR). All of the SnS thin films prepared at various substrate temperatures were polycrystalline orthorhombic structures with (111) planes preferentially oriented. The diffraction intensity of the (111) plane and the crystallite size were improved with increasing substrate temperature. The three major peaks (189, 222, $289cm^{-1}$) identified in Raman were exactly the same as the Raman spectra of monocrystalline SnS. From the XRD and Raman results, it was confirmed that all of the SnS thin films were formed into a single SnS phase without impurity phases such as $SnS_2$ and $Sn_2S_3$. In the optical transmittance spectrum, the critical wavelength of the absorption edge shifted to the long wavelength region as the substrate temperature increased. The optical bandgap was 1.67 eV at the substrate temperature of $150^{\circ}C$, 1.57 eV at $200^{\circ}C$, 1.50 eV at $250^{\circ}C$, and 1.44 eV at $300^{\circ}C$.

New data on Phase Relations in the System Cu-Fe-Sn-S (4성분계 Cu-Fe-Sn-S의 상관관계에 대한 새로운 데이터)

  • Jang, Young-Nam;Moh, Guenter
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 1991
  • Two solid solution-type phases has been experimentally found in the quaternary system Cu-Fe-Sn-S:$(Fe, Cu, Sn)_{1+x}$ and $Cu_{2-x}Fe_(1+x}SnS_4$. These solid solutions are stable around the CuS-FeS-SnS referecne plane in the composition tetrahedron. One is the sphalerite-type monosulfide solid solution which has a extensive stability range with varying degrees of sulfur/metal ratio 9.7-1.0/1.0. The other is tetrahedrite-type phase $Cu_{2-y)Fe_{1+y}SnS_4(y_{max}=0.4)$ which is stable along the $Cu_2FeSnS_4-FeS$ tie line, but shows no phase transformation in the subsolidus range and decomposes incongruently at the range of 835-862${\circ}C$, depending on the compositional variation. Particularly, the latter phase shows the characteristic superstructure reflections, indicating that it is a derivative of sphalerite structure. The stability field of these two sphalerite-type phases are defined on the basis of diffraction pattern and optical homogeneity of the synthetic materials at the temperature range of 700-400${\circ}C$.

  • PDF

A Dual Micro Gas Sensor Array with Nano Sized $SnO_2$ Thin Film (나노 박막을 이용한 듀얼 $SnO_2$ 마이크로 가스센서 어레이)

  • Chung Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1641-1647
    • /
    • 2006
  • A dual micro gas sensor way for detecting reducing gas and bad order was fabricated using nano sized $SnO_2$ thin film fabrication method. To make nano-sized thin gas sensitive $SnO_2$ thin rilm, thin tin metal layer $2500{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2,\;SnO_2(+Pt)\;and\;SnO_2(+CuO)$ were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2(Pt)$ and $SnO_2(+CuO)$ showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Role of a PVA layer During lithography of SnS2 thin Films Grown by Atomic layer Deposition

  • Ham, Giyul;Shin, Seokyoon;Lee, Juhyun;Lee, Namgue;Jeon, Hyeongtag
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.41-45
    • /
    • 2018
  • Two-dimensional (2D) materials have been studied extensively due to their excellent physical, chemical, and electrical properties. Among them, we report the material and device characteristics of tin disulfide ($SnS_2$). To apply $SnS_2$ as a channel layer in a transistor, $SnS_2$ channels were formed by a stripping method and a transfer method. The limitation of this method is that it is difficult to produce uniform device characteristics over a large area. Therefore, we directly deposited $SnS_2$ by atomic layer deposition (ALD) and then performed lithography. This method was able to produce devices with repeatable characteristics over a large area. However, the $SnS_2$ film was damaged by the acetone used as a photoresist (PR) developer during the lithography process, with the electrical properties of mobility of $2.6{\times}10^{-4}cm^2/Vs$, S.S. of 58.1 V/decade, and on/off current ratio of $1.8{\times}10^2$. These results are not suitable for advanced electronic devices. In this study, we analyzed the effect of acetone on $SnS_2$ and studied the device process to prevent such damage. Using polyvinyl alcohol (PVA) as a passivation layer during the lithography process, the electrical characteristics of the $SnS_2$ transistor had $2.11{\times}10^{-3}cm^2/Vs$ of mobility, 11.3 V/decade of S.S, and $2.5{\times}10^3$ of the on/off current ratio, which were 10x improvements to the $SnS_2$ transistor fabricated by the conventional method.

Effect of Pre-annealing on the Formation of Cu2ZnSn(S,Se)4 Thin Films from a Se-containing Cu/SnSe2/ZnSe2 Precursor

  • Ko, Young Min;Kim, Sung Tae;Ko, Jae Hyuck;Ahn, Byung Tae;Chalapathy, R.B.V.
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • A Se-containing Cu/SnSe2/ZnSe precursor was employed to introduce S to the precursor to form Cu2ZnSn(S,Se)4 (CZTSSe) film. The morphology of CZTSSe films strongly varied with two different pre-annealing environments: S and N2. The CZTSSe film with S pre-annealing showed a dense morphology with a smooth surface, while that with N2 pre-annealing showed a porous film with a plate-shaped grains on the surface. CuS and Cu2Sn(S,Se)3 phases formed during the S pre-annealing stage, while SnSe and Cu2SnSe3 phases formed during the N2 pre-annealing stage. The SnSe phase formed during N2 pre-annealing generated SnS2 phase that had plate shape and severely aggravated the morphology of CZTSSe film. The power conversion efficiency of the CZTSSe solar cell with S pre-annealing was low (1.9%) due to existence of Zn(S.Se) layer between CZTSSe and Mo substrate. The results indicated that S pre-annealing of the precursor was a promising method to achieve a good morphology for large area application.

Redox Behavior of Sn and S in Alkaline Earth Borosilicate Glass Melts with 1 mol% Na2O

  • Kim, Ki-Dong;Kim, Hyo-Kwang
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.271-274
    • /
    • 2009
  • Redox investigation of Sn and S ion was attempted in alkaline earth borosilicate glass melts with only 1 mol% $Na_2O$ by means of Square Wave Voltammetry (SWV). According to voltammograms, there was only one peak due to $Sn^{4+}/Sn^{2+}$ in melt doped with $SnO_2$. The calculated standard enthalpy and entropy of the reduction of $Sn^{4+}$ to $Sn^{2+}$ were 116kJ/mole and 62 J/mol K, respectively. The determined redox ratio, [$Sn^{2+}$] / [$Sn^{4+}$] in the temperature range of $1300{\sim}1600^{\circ}C$ was in $0.4{\sim}2.1$. On the contrary, in the voltammogram of melt doped with $BaSO_4$ there was no peak due to $S^{4+}/S^o$ but shoulder that might be attributed to the adsorption of sulfur at the electrode. The absence of the peak related with $S^{4+}/S^o$ was discussed from the view-point of the thermal decomposition behavior of $BaSO_4$ in the glass batch.

Preparation of SnS Thin Films by MOCVD Method Using Single Source Precursor, Bis(3-mercapto-1-propanethiolato) Sn(II)

  • Park, Jong-Pil;Song, Mi-Yeon;Jung, Won-Mok;Lee, Won-Young;Lee, Jin-Ho;Kim, Hang-Geun;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3383-3386
    • /
    • 2012
  • SnS thin films were deposited on glasses through metal organic chemical vapor deposition (MOCVD) method at relatively mild conditions, using bis(3-mercapto-1-propanethiolato) tin(II) precursor without toxic $H_2S$ gas. The MOCVD process was carried out in the temperature range of $300-400^{\circ}C$ and the average grain size in fabricated SnS films was about 500 nm. The optical band gap of the SnS film was about 1.3 eV which is in optimal range for harvesting solar radiation energy. The precursor and SnS films were characterized through infrared spectroscopy, nuclear magnetic resonance spectroscopy, DIP-EI mass spectroscopy, elemental analyses, thermal analysis, X-ray diffraction, and field emission scanning electron microscopic analyses.

Microwave Assisted Synthesis of SnS Decorated Graphene Nanocomposite with Efficient Visible-Light-Driven Photocatalytic Applications

  • Wang, Jun-Hui;Zeng, Yi-Kai;Gu, Hao;Zhu, Lei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.641-649
    • /
    • 2020
  • A facile microwave assisted solvothermal process is designed for fabricating SnS nanoparticles decorated on graphene nanosheet, which used as visible light driven photocatalyst. Some typical characterization techniques such as XRD, FT-IR, SEM with EDX analysis, and TEM and BET analysis are used to analyse the physical characteristics of as-prepared samples. Spherical SnS nanoparticles are uniformly dispersed on the surface of graphene nanosheet due to ammonia, which can prevent the aggregation of graphene oxide. Meanwhile, microwave radiation provides fast energy that promotes the formation of spherical SnS nanoparticles within a short time. The visible light photocatalytic activity of as-prepared SnS-GR nanocomposites is analysed through photodegradation efficiency of methylene blue with high concentration. According to the higher photocatalytic property, the as-prepared SnS-GR nanocomposites can be expected to be an efficient visible light driven photocatalyst. After five cycles for decolorization, the rate decreases from 87 % to 78 % (about 9 %). It is obvious that the photocatalytic activity of SnS-GR nanocomposite has good repeatability.