DOI QR코드

DOI QR Code

Microwave Assisted Synthesis of SnS Decorated Graphene Nanocomposite with Efficient Visible-Light-Driven Photocatalytic Applications

  • Wang, Jun-Hui (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Zeng, Yi-Kai (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Gu, Hao (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Zhu, Lei (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2020.10.13
  • Accepted : 2020.11.02
  • Published : 2020.12.27

Abstract

A facile microwave assisted solvothermal process is designed for fabricating SnS nanoparticles decorated on graphene nanosheet, which used as visible light driven photocatalyst. Some typical characterization techniques such as XRD, FT-IR, SEM with EDX analysis, and TEM and BET analysis are used to analyse the physical characteristics of as-prepared samples. Spherical SnS nanoparticles are uniformly dispersed on the surface of graphene nanosheet due to ammonia, which can prevent the aggregation of graphene oxide. Meanwhile, microwave radiation provides fast energy that promotes the formation of spherical SnS nanoparticles within a short time. The visible light photocatalytic activity of as-prepared SnS-GR nanocomposites is analysed through photodegradation efficiency of methylene blue with high concentration. According to the higher photocatalytic property, the as-prepared SnS-GR nanocomposites can be expected to be an efficient visible light driven photocatalyst. After five cycles for decolorization, the rate decreases from 87 % to 78 % (about 9 %). It is obvious that the photocatalytic activity of SnS-GR nanocomposite has good repeatability.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  3. B. Tang, G. X. Hu and H. Y. Gao, Appl. Spectros. Rev., 45, 369 (2010). https://doi.org/10.1080/05704928.2010.483886
  4. S. M. Peak, E. J. Yoo and I. Honma, Nano Lett., 9, 72 (2009). https://doi.org/10.1021/nl802484w
  5. B. Seger and P. V. Kamat, J. Phys. Chem. C, 113, 7990 (2009). https://doi.org/10.1021/jp900360k
  6. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  7. N. S. Lewis, Nature, 414, 589 (2001). https://doi.org/10.1038/414589a
  8. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 292, 1897 (2001). https://doi.org/10.1126/science.1060367
  9. M. A. Kolb, W. F. Maier and K. Stowe, Catal. Today, 159, 64 (2011). https://doi.org/10.1016/j.cattod.2010.07.010
  10. G. C. Chinchen and M. S. Spencer, J. Catal., 112, 325 (1988). https://doi.org/10.1016/0021-9517(88)90145-5
  11. B. L. Abrams and J. P. Wilcoxon, Crit. Rev. Solid State Mater. Sci., 30, 153 (2005). https://doi.org/10.1080/10408430500200981
  12. A. N. Cao, Z. Liu, S. S. Chu, M. H. Wu, Z. M. Ye, Z. W. Cai, Y. L. Chang, S. F. Wang, Q. H. Gong and Y. F. Liu, Adv. Mater., 22, 103 (2010). https://doi.org/10.1002/adma.200901920
  13. C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara and M. Rajamathi, Carbon, 47, 2054 (2009). https://doi.org/10.1016/j.carbon.2009.03.055
  14. H. T. Hu, X. B. Wang, F. M. Liu, J. C. Wang and C. H. Xu, Synth. Met., 161, 404 (2011). https://doi.org/10.1016/j.synthmet.2010.12.018
  15. N. K. Reddy and K. T. R. Reddy, Phys. B (Amsterdam, Neth.), 368, 25 (2005). https://doi.org/10.1016/j.physb.2005.06.032
  16. X. L. Gou, J. Chen and P. W. Synthesis, Mater. Chem. Phys., 93, 557 (2004). https://doi.org/10.1016/j.matchemphys.2005.04.008
  17. M. Jayalakshmi, M. M. Rao and B. M. Choudary, Electrochem. Commun., 6, 1119 (2004). https://doi.org/10.1016/j.elecom.2004.09.004
  18. P. S. Tang, H. F. Chen, F. Cao, G. X. Pan, K. Y. Wang, M. H. Xu and Y. H. Tong, Mater. Lett., 65, 450 (2011). https://doi.org/10.1016/j.matlet.2010.10.055
  19. W. C. Oh, M. L. Chen, K. Zhang, F. J. Zhang and W. K. Jang, J. Korean Phys. Soc., 56, 1097 (2010). https://doi.org/10.3938/jkps.56.1097
  20. W. C. Oh and F. J. Zhang, Asian J. Chem., 23, 875 (2011).
  21. P. Z. Sun, M. Zhu, K. L. Wang, M. L. Zhong, J. Q. Wei, D. H. Wu, Z. P. Xu and H. W. Zhu, ACS Nano, 7, 4428 (2013).
  22. Y. Liu, Y. Zhang, G. H. Ma, Z. Wang, K. Y. Liu and H. T. Liu, Electrochim. Acta, 88, 519 (2013). https://doi.org/10.1016/j.electacta.2012.10.082
  23. D. Li, M. B. Muller, S. Gilje and G. G. Wallace, Nat. Nanotechnol., 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  24. L. Zhu, Z. D. Meng, T. Ghosh, M. M. Peng, K. Y. Cho and W.C. Oh, Fresenius Environ. Bull., 21, 1675 (2012).
  25. S. G. Hickey, C.Waurisch and B. Rellinghaus, J. Am. Chem. Soc., 130, 14978 (2008). https://doi.org/10.1021/ja8048755
  26. H. Zhang, X. J. Lv, Y. M. Li, Y. Wang and J. H. Li, ACS Nano, 4, 380 (2010). https://doi.org/10.1021/nn901221k
  27. D. Cai, M. Song, J. Mater. Chem., 17, 3678 (2007). https://doi.org/10.1039/b705906j
  28. S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009). https://doi.org/10.1007/s12034-009-0001-4
  29. K. Ullah, S. Ye, L. Zhu, Z. D. Meng, S. Sarkar and W. C. Oh, Mater. Sci. Eng., B, 180, 20 (2014). https://doi.org/10.1016/j.mseb.2013.10.014
  30. Z. D. Meng, M. M. Peng, L. Zhu and W. C. Oh, Appl. Catal. B. Environ., 141, 113 (2012).
  31. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 54, 2201 (1982). https://doi.org/10.1351/pac198254112201
  32. J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu, Y. Kong and B. Wang, Ultrason. Sonochem., 18, 177 (2011). https://doi.org/10.1016/j.ultsonch.2010.05.002
  33. Y. W. Guo, C. P. Cheng, J. Wang, Z. Q. Wang, X. D. Jin, K. Li, P. L. Kang and J. Q. Gao, J. Hazard. Mater., 192, 786 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.084
  34. Z. D. Meng, T. Ghosh, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, J. Mater. Chem., 22, 16127 (2012). https://doi.org/10.1039/c2jm32344c