Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.12.641

Microwave Assisted Synthesis of SnS Decorated Graphene Nanocomposite with Efficient Visible-Light-Driven Photocatalytic Applications  

Wang, Jun-Hui (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Zeng, Yi-Kai (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Gu, Hao (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Zhu, Lei (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.30, no.12, 2020 , pp. 641-649 More about this Journal
Abstract
A facile microwave assisted solvothermal process is designed for fabricating SnS nanoparticles decorated on graphene nanosheet, which used as visible light driven photocatalyst. Some typical characterization techniques such as XRD, FT-IR, SEM with EDX analysis, and TEM and BET analysis are used to analyse the physical characteristics of as-prepared samples. Spherical SnS nanoparticles are uniformly dispersed on the surface of graphene nanosheet due to ammonia, which can prevent the aggregation of graphene oxide. Meanwhile, microwave radiation provides fast energy that promotes the formation of spherical SnS nanoparticles within a short time. The visible light photocatalytic activity of as-prepared SnS-GR nanocomposites is analysed through photodegradation efficiency of methylene blue with high concentration. According to the higher photocatalytic property, the as-prepared SnS-GR nanocomposites can be expected to be an efficient visible light driven photocatalyst. After five cycles for decolorization, the rate decreases from 87 % to 78 % (about 9 %). It is obvious that the photocatalytic activity of SnS-GR nanocomposite has good repeatability.
Keywords
graphene; SnS; DPCO; visible light responsive; nanocomposites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Li, M. B. Muller, S. Gilje and G. G. Wallace, Nat. Nanotechnol., 3, 101 (2008).   DOI
2 L. Zhu, Z. D. Meng, T. Ghosh, M. M. Peng, K. Y. Cho and W.C. Oh, Fresenius Environ. Bull., 21, 1675 (2012).
3 S. G. Hickey, C.Waurisch and B. Rellinghaus, J. Am. Chem. Soc., 130, 14978 (2008).   DOI
4 H. Zhang, X. J. Lv, Y. M. Li, Y. Wang and J. H. Li, ACS Nano, 4, 380 (2010).   DOI
5 D. Cai, M. Song, J. Mater. Chem., 17, 3678 (2007).   DOI
6 S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009).   DOI
7 K. Ullah, S. Ye, L. Zhu, Z. D. Meng, S. Sarkar and W. C. Oh, Mater. Sci. Eng., B, 180, 20 (2014).   DOI
8 Z. D. Meng, M. M. Peng, L. Zhu and W. C. Oh, Appl. Catal. B. Environ., 141, 113 (2012).
9 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 54, 2201 (1982).   DOI
10 J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu, Y. Kong and B. Wang, Ultrason. Sonochem., 18, 177 (2011).   DOI
11 Y. W. Guo, C. P. Cheng, J. Wang, Z. Q. Wang, X. D. Jin, K. Li, P. L. Kang and J. Q. Gao, J. Hazard. Mater., 192, 786 (2011).   DOI
12 Z. D. Meng, T. Ghosh, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, J. Mater. Chem., 22, 16127 (2012).   DOI
13 S. M. Peak, E. J. Yoo and I. Honma, Nano Lett., 9, 72 (2009).   DOI
14 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).   DOI
15 C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 321, 385 (2008).   DOI
16 B. Tang, G. X. Hu and H. Y. Gao, Appl. Spectros. Rev., 45, 369 (2010).   DOI
17 B. Seger and P. V. Kamat, J. Phys. Chem. C, 113, 7990 (2009).   DOI
18 M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).   DOI
19 N. S. Lewis, Nature, 414, 589 (2001).   DOI
20 M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 292, 1897 (2001).   DOI
21 A. N. Cao, Z. Liu, S. S. Chu, M. H. Wu, Z. M. Ye, Z. W. Cai, Y. L. Chang, S. F. Wang, Q. H. Gong and Y. F. Liu, Adv. Mater., 22, 103 (2010).   DOI
22 M. A. Kolb, W. F. Maier and K. Stowe, Catal. Today, 159, 64 (2011).   DOI
23 G. C. Chinchen and M. S. Spencer, J. Catal., 112, 325 (1988).   DOI
24 B. L. Abrams and J. P. Wilcoxon, Crit. Rev. Solid State Mater. Sci., 30, 153 (2005).   DOI
25 C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara and M. Rajamathi, Carbon, 47, 2054 (2009).   DOI
26 H. T. Hu, X. B. Wang, F. M. Liu, J. C. Wang and C. H. Xu, Synth. Met., 161, 404 (2011).   DOI
27 N. K. Reddy and K. T. R. Reddy, Phys. B (Amsterdam, Neth.), 368, 25 (2005).   DOI
28 X. L. Gou, J. Chen and P. W. Synthesis, Mater. Chem. Phys., 93, 557 (2004).   DOI
29 M. Jayalakshmi, M. M. Rao and B. M. Choudary, Electrochem. Commun., 6, 1119 (2004).   DOI
30 P. S. Tang, H. F. Chen, F. Cao, G. X. Pan, K. Y. Wang, M. H. Xu and Y. H. Tong, Mater. Lett., 65, 450 (2011).   DOI
31 W. C. Oh, M. L. Chen, K. Zhang, F. J. Zhang and W. K. Jang, J. Korean Phys. Soc., 56, 1097 (2010).   DOI
32 W. C. Oh and F. J. Zhang, Asian J. Chem., 23, 875 (2011).
33 P. Z. Sun, M. Zhu, K. L. Wang, M. L. Zhong, J. Q. Wei, D. H. Wu, Z. P. Xu and H. W. Zhu, ACS Nano, 7, 4428 (2013).
34 Y. Liu, Y. Zhang, G. H. Ma, Z. Wang, K. Y. Liu and H. T. Liu, Electrochim. Acta, 88, 519 (2013).   DOI