• 제목/요약/키워드: SnO2

검색결과 380건 처리시간 0.022초

MoO3-SnO2-CeO2 촉매에 의한 대두유로부터 바이오디젤의 합성 (Synthesis of Biodiesel from Soybean Oil over MoO3-SnO2-CeO2 Catalysts)

  • 정원영;이만식;홍성수
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.723-728
    • /
    • 2012
  • $MoO_3$, $SnO_2$$CeO_2$ 혼합촉매를 사용하여 대두유의 전이에스터화 반응에 의해 바이오디젤을 제조하였다. 제조된 촉매는 XRD 및 $NH_3$-TPD 등으로 특성을 분석하였다. 세 가지 금속 산화물 중 $MoO_3$가 가장 높은 활성을 보여주었으며, 반응에 사용된 촉매의 양이 7%일 때 바이오디젤로의 전환율이 가장 높았다. 또한, 반응물에 첨가된 물은 바이오디젤로의 전환율이 감소되었다. $MoO_3$$SnO_2$가 혼합된 촉매에서는 $SnO_2$$MoO_3$의 혼합비율이 5:5일 때 가장 높은 활성을 나타내었으며, $CeO_2$가 첨가된 촉매의 경우 첨가된 $CeO_2$의 첨가량이 20% 일 때 가장 높은 활성을 나타내었다. 또한 이들의 활성은 촉매들의 산점의 양과 상관관계를 보여주었다. 폐대두유를 이용한 반응에서는 약 30% 이상 바이오디젤로의 전환율이 감소하였다.

High Sensitivity and Selectivity of Array Gas Sensor through Glancing Angle Deposition Method

  • Kim, Gwang Su;Song, Young Geun;Kang, Chong yun
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.407-411
    • /
    • 2020
  • In this study, we propose an array-type gas sensor with high selectivity and response using multiple oxide semiconductors. The sensor array was composed of SnO2 and In2O3, and the detection characteristics were improved by using Pt, Au, and Pd catalysts. All samples were deposited directly on the Pt interdigitated electrode (IDE) through the e-beam evaporator glancing angle deposition (GAD) method. They grew in the form of well-aligned nanorods at off-axis angles. The prepared SnO2 and In2O3 nanorod samples were exposed to CH3COCH3, C7H8, and NO2 gases in a 300℃ dry condition. Au-decorated SnO2, Au-decorated In2O3, and Pd-decorated In2O3 exhibited high selectivity for CH3COCH3, C7H8, and NO2, respectively. They demonstrated a high detection limit of the sub ppb level computationally. In addition, measurements from each sensor were executed in the 40% relative humidity condition. Although there was a slight reduction in detection response, high selectivity and distinguishable detection characteristics were confirmed.

SnO2 기반 고체상의 투과도 가변 소자 제조 (Fabrication of SnO2-based All-solid-state Transmittance Variation Devices)

  • 신동균;서유석;이진영;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.23-29
    • /
    • 2020
  • Electrochromic (EC) device is an element whose transmittance is changed by electrical energy. Coloring and decoloring states can be easily controlled and thus used in buildings and automobiles for energy saving. There exist several types of EC devices; EC using electrolytes, polymer dispersed liquid crystal (PDLC), and suspended particle device (SPD) using polarized molecules. However, these devices involve solutions such as electrolytes and liquid crystals, limiting their applications in high temperature environments. In this study, we have studied all-solid-state EC device based on Tin(IV) oxide (SnO2). A coloring phase is achieved when electrons are accumulated in the ultraviolet (UV)-treated SnO2 layer, whereas a decoloring mode is obtained when electrons are empty there. The UV treatment of SnO2 layer brings in a number of localized states in the bandgap, which traps electrons near the conduction band. The SnO2-based EC device shows a transmittance of 70.7% in the decoloring mode and 41% in the coloring mode at a voltage of 2.5 V. We have achieved a transmittance change as large as 29.7% at the wavelength of 550 nm. It also exhibits fast and stable driving characteristics, which have been demonstrated by the cyclic experiments of coloration and decoloration. It has also showed the memory effects induced by the insulating layer of titanium dioxide (TiO2) and silicone (Si).

Au/SnO2 core-shell 나노구조 센서의 구동온도가 CO 감동에 미치는 영향 (Effect of Working Temperature on Sensitivity of Au/SnO2 Core-Shell Structure Nanoparticles for CO Gas)

  • 유연태
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.456-460
    • /
    • 2012
  • Au/$SnO_2$ core-shell structure nanoparticles (NPs) were synthesized by microwave hydrothermal method, and the effect of working temperature on sensitivity of Au/$SnO_2$ core-shell NPs for CO gas was investigated. The $SnO_2$ shell layer was consisted of $SnO_2$ primary particles with 4.5 nm diameter. The response of Au/$SnO_2$ core-shell NPs for CO gas was maximized at the working temperature of $350^{\circ}C$ while the sensitivity increased with decreasing the working temperature due to the low grain size effect of $SnO_2$ NPs on the response of CO gas.

SnO2가 첨가된 저온소결 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of Low Temperature Sintering (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics Doped with SnO2)

  • 이광민;류주현;이지영
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.690-693
    • /
    • 2015
  • In this paper, in order to develop excellent Pb-free composition ceramics for ultrasonic sensor. The $SnO_2$-doped ($Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3$)(abbreviated as NKL-NST) ceramics have been synthesized using the ordinary solid state reaction method. The effect of $SnO_2$-doping on their dielectric and piezoelectric properties was investigated. The ceramics doped with 0 wt% $SnO_2$ have the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33}.g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=195[pC/N]$, $d_{33}.g_{33}=5.62pm^2/N.kp=0.40$, $density=4.436[g/cm^3]$. suitable for duplex ultrasonic sensor application.

화학적 합성법을 이용한 마이크론 이하급 2SnO·(H2O) 분말의 합성과 하소 특성 (Synthesis of Sub-Micron 2SnO·(H2O) Powders Using Chemical Reduction Process and Thermal Calcination)

  • 지상수;이종현
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.631-637
    • /
    • 2013
  • Synthesis of sub-micron $2SnO{\cdot}(H_2O)$ powders by chemical reduction process was performed at room temperature as function of viscosity of methanol solution and molecular weight of PVP (polyvinylpyrrolidone). Tin(II) 2-ethylhexanoate and sodium borohydride were used as the tin precursor and the reducing agent, respectively. Simultaneous calcination and sintering processes were additionally performed by heating the $2SnO{\cdot}(H_2O)$ powders. In the synthesis of the $2SnO{\cdot}(H_2O)$ powders, it was possible to control the powder size using different combinations of the methanol solution viscosity and the PVP molecular weight. The molecular weight of PVP particularly influenced the size of the synthesized $2SnO{\cdot}(H_2O)$ powders. A holding time of 1 hr in air at $500^{\circ}C$ sufficiently transformed the $2SnO{\cdot}(H_2O)$ into $SnO_2$ phase; however, most of the PVP (molecular weight: 1,300,000) surface-capped powders decomposed and was removed after heating for 1 h at $700^{\circ}C$. Hence, heating for 1 h at $500^{\circ}C$ made a porous $SnO_2$ film containing residual PVP, whereas dense $SnO_2$ films with no significant amount of PVP formed after heating for 1 h at $700^{\circ}C$.

전기방사법으로 합성된 SnO2-Cr2O3 복합나노섬유의 이산화탄소 가스감응 특성 (CO2 Sensing Properties of SnO2-Cr2O3 Composite Nanofibers Via Electrospinning Method)

  • 이재형;김재훈;김진영;김상섭
    • 한국표면공학회지
    • /
    • 제50권4호
    • /
    • pp.289-295
    • /
    • 2017
  • Detection of $CO_2$ gas in both indoor and outdoor atmospheres is now becoming an important issue because of greenhouse effect and climate crisis. In this study, gas sensors based on $SnO_2-Cr_2O_3$ composite nanofibers were fabricated by the electrospinning method to detect $CO_2$ gas. The gas sensors showed a response to ppm level of $CO_2$ gas from room temperature to $200^{\circ}C$ while the highest response was observed at $150^{\circ}C$. The gas response is enhanced by the catalytic property of $Cr_2O_3$. Selective $CO_2$ detection is obtained through the chemical reaction of $Cr_2O_3$ to chromium carbonate. All the results suggest the $SnO_2-Cr_2O_3$ composite material is promising for the use of $CO_2$ gas sensors.

Quinacridone을 첨가시킨 SnO2가 도핑된 TiO2 분말의 광촉매 특성 (Photoactivity of SnO2-Doped TiO2 Powder Sensitized with Quinacridone)

  • 정미원;곽윤정
    • 공업화학
    • /
    • 제18권6호
    • /
    • pp.650-653
    • /
    • 2007
  • $SnO_2$가 도핑된 $TiO_2$ 분말을 tin (IV) bis(acetylacetonate) dichloride와 titanium diisopropoxide bis(acetylacetonate)를 출발물질로, 유기염료인 quinacridone을 첨가하여 합성하였다. 반응 전후 염료의 구조를 FT-IR로 관찰하였고, 입자의 모양과 형태 및 결정의 구조는 FE-SEM과 XRD 분석기로 알아보았다. 환경오염물질로 유기염료인 indigo carmine을 선택하여 관찰한결과, 아나타제 구조를 갖는 quinacridone이 첨가된 분말을 합성하여, 가시광선 영역에서 광분해 효과를 관찰할 수 있었다.

고분자 첨가법에 의해 SnO2가 도핑된 TiO2 분말의 합성 및 광촉매 특성 (Synthesis and Photoactivity of SnO2 - Doped Anatase - Type TiO2 Powder Via Polymerization - Complex Route)

  • 정미원;곽윤정
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.561-564
    • /
    • 2006
  • $SnO_{2}$가 도핑된 아나타제형의 $TiO_{2}$ 분말을 tin (IV) bis (acetylacetonate) dichloride와 titanium diisopropoxide bis (acetyl- acetonate)를 출발물질로, polyethylene glycol (PEG)을 첨가하여 합성하였다. 반응과정에 대한 구조변화를 FT-IR로 추적하였고, 입자의 모양과 형태 및 결정의 구조는 FE-SEM과 XRD 분석기로 관찰하였다. 합성된 분말의 광촉매 효과는 환경오염물질로 indigo carmine (IC)을 선택하여 UV-visible 스펙트라로 관찰하였다.

Electrical Contact Characteristics of Ag-SnO2 Materials with Increased SnO2 Content

  • Chen, Pengyu;Liu, Wei;Wang, Yaping
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2348-2352
    • /
    • 2017
  • The electrical contact characteristics including temperature rise, contact resistance and arc erosion rate of the $Ag-SnO_2$ materials with increased $SnO_2$ content were investigated during the repeated make-and-break operations. The thickness of arcing melting layer reduces by half and the arc erosion rate decreases more than 70% under 10000 times operations at AC 10 A with the $SnO_2$ content increasing from 15 wt.% to 45 wt.%, on one hand, temperature rise and contact resistance increase obviously but could be reduced to the same order of conventional $Ag-SnO_2$ materials by increasing the contact force. The microstructure evolution and the effect of $SnO_2$ on the arc erosion, contact resistance were analyzed.