J. Korean Inst. Electr. Electron. Mater. Eng.
Vol. 28, No. 11, pp. 690-693 November 2015
DOI: http://dx.doi.org/10.4313/JKEM.2015.28.11.690
ISSN 1226-7945 (Print), 2288-3258 (Online)

SnO₂가 첨가된 저온소결 (Na,K,Li)(Nb,Sb,Ta)O₃계 세라믹스의 유전 및 압전 특성

이광민¹, 류주현^{1,a}, 이지영^{2,b}

¹ 세명대학교 전기공학과 ² 세명대학교 컴퓨터공학부

Dielectric and Piezoelectric Properties of Low Temperature Sintering (Na,K,Li)(Nb,Sb,Ta)O₃ Ceramics Doped with SnO₂

Gwang-Min Lee¹, Ju-Hvun Yoo^{1,a}, and Ji-Young Lee^{2,b}

(Received September 10, 2015; Revised September 24, 2015; Accepted October 8, 2015)

Abstract: In this paper, in order to develop excellent Pb-free composition ceramics for ultrasonic sensor. The SnO_2 -doped $(Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3)$ (abbreviated as NKL-NST) ceramics have been synthesized using the ordinary solid state reaction method. The effect of SnO_2 -doping on their dielectric and piezoelectric properties was investigated. The ceramics doped with 0 wt% SnO_2 have the optimum values of piezoelectric constant(d_{33}), piezoelectric figure of merit(d_{33} . d_{33}

Keywords: SnO2, NKN, Lead-free piezoelectric

1. 서 론

(PbZr)TiO₃계 세라믹스는 우수한 압전 특성 때문에 계측 기기, 초음파 기기, 통신 기기, 압전변압기, 에너 지하베스팅 소자, 그리고 액츄에이터 등에 폭 넓게 사용되고 있다. 그러나 현재 사용 중인 이러한 세라믹 재료들은 Pb(ZrTi)O₃계로 다량의 납을 포함하고 있으며 이것들은 인체에 유해하고 환경에 오염을 유발하고

Copyright ©2015 KIEEME. All rights reserved. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

있다 [1]. 때문에 선진국들은 수입을 제한하고 관련법 규를 제정하여 사용을 금지하고 있는 추세이며 친환경적인 재료의 개발에 대해 큰 관심이 주목되고 있다 [2]. 이러한 친환경적인 소자로 무연(Pb-free) 압전 세라믹스가 있으며 일반적으로 무연 압전 세라믹스는 3가지 타입으로 나뉠 수 있다.

첫 번째로 Bi layer-structured ceramics로 치밀한 미세구조를 얻기 어려우며 k_p 값이 매우 낮으나 높은 Q_m 값을 얻을 수 있다. 두 번째로 Bi perovskite type ceramics는 약 200° C 부근에서 강유전상이 반강유전 상으로 변환되는 문제가 있으나 높은 d_{33} 와 k_p 값을 얻을 수 있다. 마지막으로 NKN ceramics는 일반적인 산화물 혼합법을 이용하기 때문에 높은 밀도로 얻기 어려우나 높은 큐리온도(약 400° C)와 큰 k_p (약 36%)를

¹ Department of Electrical Engineering, Semyung University, Jecheon 27136, Korea

² Department of Computer Science, Semyung University, Jecheon 27136, Korea

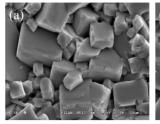
a. Corresponding author; juhyun57@semyung.ac.kr

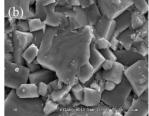
b. Corresponding author; ljy@semyung.ac.kr

얻을 수 있다 [3-5]. 그래서 높은 밀도로 얻기 위하여 spark plasma sintering, hot pressing 등 방법을 이용하여 높은 밀도로 얻을 수 있으나 이러한 과정들은 높은 비용 때문에 일반적인 사용이 어렵다 [6].

따라서 본 연구에서는 저온소결로 제작하여 초음파센서에 응용하고자 무연 $(Na,K,Li)(Nb,Sb,Ta)O_3$ 계 세라믹스에 CuO, Fe_2O_3 , Bi_2O_3 , SnO_2 등을 소결조제로 사용하여 산화물 혼합법을 이용한 소결 방법으로 제조하여 유전 및 압전 특성을 관찰하였다.

2. 실험 방법


본 실험에서는 다음의 조성식을 이용하여 일반적인 산화물 혼합법으로 시편을 제조하였다.


 $(Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3 + 0.3 wt\% \\ Bi_2O_3 + 0.4 wt\% Fe_2O_3 + 0.2 wt\% CuO + x wt\% \\ SnO_2 (x= 0, 0.1, 0.2, 0.3, 0.4)$

99% 이상의 순도를 가지는 원료를 10⁻⁴ g까지 칭량 하였고, 아세톤을 분산매로 하여 24시간 동안 3 Φ zirconia ball을 사용하여 혼합·분쇄하였다. 혼합·분쇄 된 시료는 850℃에서 5시간 하소하였다. 하소된 시료 에 첨가제 Bi₂O₃, Fe₂O₃, CuO, SnO₂를 소결조제로 첨 가하여 2차 혼합·분쇄 후 건조하였다. 건조된 시료에 PVA 수용액을 5 wt% 첨가하고 직경 17 Φ의 몰더로 15 MPa의 압력을 가하여 성형하였다. 성형된 시편은 970℃에서 10시간 소결하였다. 소결된 시편은 1 mm 의 두께로 연마하고, Ag 전극을 스크린 프린트법으로 도포한 뒤, 600℃에서 10분간 열처리 하였다. 상온의 실리콘유 속에서 3 kV/mm 직류전계를 인가하여 30 분 동안 분극하였다. 분극된 시편은 impedance analyzer(Agilent 4294)를 이용하여 공진·반공진 주파 측정하였고, impedance 특성을 meter(Instek LCR-819)를 이용하여 1 kHz의 주파수로 유전 특성을 측정하였다. 시편의 압전 및 유전 특성은 IEEE의 규정에 따라 공진·반공진법을 이용하여 계산하 였다.

3. 결과 및 고찰

그림 1은 SnO₂의 첨가에 따른 제작된 시편의 미세

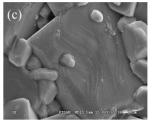


Fig. 1. The scanning electron microscopy(SEM) of specimens as a function of the amount of SnO_2 addition. (a) 0 wt%, (b) 0.2 wt%, and (c) 0.4 wt%.

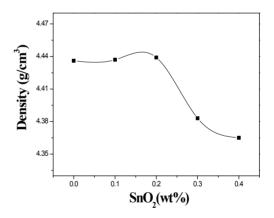


Fig. 2. Density of specimens as a function of SnO₂ addition.

구조를 주사전자현미경으로 조사하여 나타낸 것이다. SnO_2 는 액상의 형성과 그레인 성장을 억제시키는 inhibitor로 작용하는 것으로 잘 알려져 있다. 0.2 wt%, 첨가되었을 때는 어느 정도 그레인 성장을 억제시키는 inhibitor로 작용하여 그레인이 감소하다가 0.4 wt%의 과 잉 첨가 시에는 액상으로 크게 작용하여 그레인이 많이 성장하였다.

그림 2는 SnO_2 의 첨가에 따른 밀도로 나타내고 있다. SnO_2 가 0.2 wt%까지 첨가될수록 미소하게 증가하지만 그 후 급격하게 감소하는 것을 나타내고 있다. 이는 SnO_2 가 액상을 형성하여 소결온도를 낮추고 inhibitor로 작용하여 치밀화를 촉진한 것으로 생각되며,

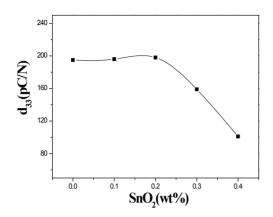


Fig. 3. Piezoelectric constant(d_{33}) of specimens as a function of SnO_2 addition.

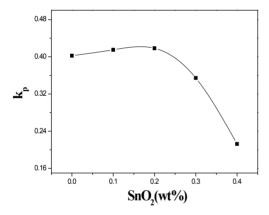


Fig. 4. Electromechanical coupling $factor(k_p)$ of specimens as a function of SnO_2 addition.

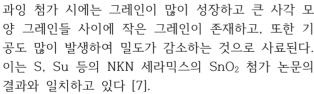


그림 3은 SnO_2 의 첨가에 따른 압전상수 (d_{33}) 를 나타내고 있다. SnO_2 첨가가 앞에서 나타낸 그림 1의 밀도와 같이 미소하게 증가하지만 0.2 wt% 이후 급격하게 감소되는 것으로 나타내고 있다. 이러한 현상은 SnO_2 의 과잉 첨가로 인하여 밀도의 감소와 일치하고 있다.

그림 4는 SnO_2 의 첨가에 따른 전기기계 결합계수 (k_p) 를 나타내고 있다. SnO_2 가 첨가되면 약간 증가하는 것을 보이며 0.2 wt% 이상 첨가 시 급격하게 감소하는 것을 나타내고 있다.

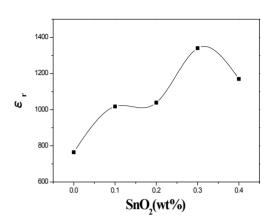


Fig. 5. Dielectric constant(ϵ_r) of specimens as a function of SnO₂ addition.

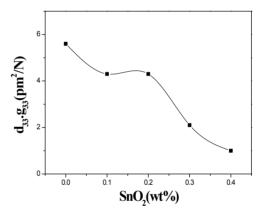


Fig. 6. Piezoelectric figure of $merit(d_{33}\cdot g_{33})$ of specimens as a function of SnO_2 addition.

이는 그림 1의 SEM 사진에서 알 수 있듯이 기공의 증대에 의한 그림 2의 밀도의 급격한 감소로 인하여 감소한 것으로 사료된다.

그림 5는 SnO₂의 첨가에 따른 유전상수를 나타내고 있다. SnO₂가 첨가됨에 따라 0.3 wt%까지 증가하는 것으로 나타났으며 그 후 감소하는 것으로 나타났다. 이는 액상형성으로 그레인의 크기가 증가하여 유전상수가 증가한 것으로 사료되며 이후 역시 SnO₂의 과잉 첨가로 저유전율층인 편석된 불순물과 기공의 증가로 인하여 유전상수도 감소한 것으로 사료된다 [7].

그림 6은 SnO_2 첨가에 따른 압전성능지수 $(d_{33}.g_{33})$ 의 값을 나타내고 있다. SnO_2 가 0 wt% 첨가될 때 $5.62~pm^2/N$ 의 최댓값을 나타냈다. SnO_2 가 첨가함에 따라 압전성능지수는 점차 하락하는 특성을 나타냈다.

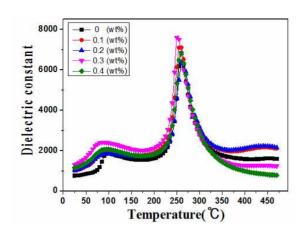


Fig. 7. Temperature dependence of dielectric constant of specimens as a function of SnO_2 addition.

Table 1. The physical properties of specimens as a function of SnO_2 addition.

X	P	k _p	E ,	d ₃₃	g ₃₃	d _{33*} g ₃₃
	(g/cm³)			(pC/N)	(10^{-3} mV/N)	(pm^2/N)
0	4.436	0.40	764	195	28.8	5.62
0.1	4.437	0.41	1,017	196	21.8	4.27
0.2	4.439	0.42	1,038	198	21.5	4.26
0.3	4.383	0.35	1,339	159	13.4	2.13
0.4	4.365	0.21	1,169	101	9.8	0.99

그림 7은 SnO₂ 첨가에 따른 유전상수의 온도 의존성을 나타낸 것이다. 모든 시편은 사방정계상 (orthorhombic)에서 정방정계상(tetragonal)으로 변하는 1차 상전이온도(T_{O-T})가 90°C에서 100°C 사이에 존재하는 것으로 나타났고 정방정계상(tetragonal)에서 입방정계상(cubic) 사이의 큐리온도(T_C)는 250°C에서 260°C 사이에서 나타난 것으로 확인할 수 있다.

표 1은 SnO_2 첨가에 따른 제반 물성을 정리한 것이다. 0 wt% 첨가된 조성이 전압출력계수 g상수가 커서수신용으로 적합하고, 0.2 wt% 첨가 시에는 압전 d상수가 커서 송신용으로 적합하였으며, 송수신용으로 동시 사용하려면 압전성능지수 $(d_{33}\cdot g_{33})$ 가 가장 큰 0 wt% 첨가된 조성이 가장 적합하였다.

4. 결 론

본 연구에서 우수한 압전 및 유전 특성을 갖고 저온 소결 가능한 초음파 센서용 무연 압전 세라믹스를 개발 하기 위하여 $(Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3 + 0.3$ wt% $Bi_2O_3 + 0.4$ wt% $Fe_2O_3 + 0.2$ wt% CuO + x wt% SnO_2 조성에 SnO_2 첨가에 따른 압전 및 유전특성에 미치는 영향에 대하여 조사한 결과 다음과 같은 결과를 얻었다.

- 1. SnO_2 의 첨가량에 따라 밀도는 0.2 wt%일 때 최 댓값 4.439 $[g/cm^3]$ 을 나타냈으나 대부분 비슷한 값을 나타내었고, 0.2 wt% 이후 감소하는 것으로 나타냈다.
- 2. SnO_2 를 첨가함에 따라 최적의 압전계수, 전기기계 결합계수는 0.2 wt% 첨가되어 198[pC/N], 0.41의 최댓값을 나타냈다.
- 3. SnO_2 를 첨가함에 따라 유전상수는 0.3 wt% 첨가되었을 때 1,339으로 최댓값을 나타냈다.
- 4. SnO₂를 0.4 wt% 이상 첨가 시 전체적으로 특성 들이 감소하는 특성을 나타냈다.

0 wt% 첨가된 조성이 전압출력계수 g상수가 커서 수신용으로 적합하고 0.2 wt% 첨가 시에는 압전 d상 수가 커서 송신용으로 적합하였으며, 송수신용으로 동 시 사용하려면 압전성능지수(d₃₃ g₃₃)가 가장 큰 0 wt% 첨가된 조성이 가장 적합하였다.

감사의 글

본 연구는 2015년도 세명대학교 교내학술연구비로 수행하였음.

REFERENCES

- [1] S. H. Lee, S. P. Nam, S. G. Lee, and Y. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 116 (2011).
- [2] Y. H. Lee, D. H. Kim, J. H. Yoo, I. S. Kim, J. S. Song, and J. I. Hong, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 489 (2009).
- [3] J. R. Noh and J. H. Yoo, Ferroelectrics, 449, 125 (2013).[DOI: http://dx.doi.org/10.1080/00150193.2013.822777]
- [4] C. Zhang, Z. Chen, W. J. Ji, L. Wang, Y. B. Chen, S. H. Yao, S. T. Zhang, and Y. F. Chen, J. Alloys Compd., 509, 2425 (2011). [DOI: http://dx.doi.org/10.1016/j.jallcom.2010.11.037]
- [5] B. H. Seo and J. H. Yoo, J. Korean Inst. Electr. Electron. Mater. Eng., 23, 617 (2010).
- [6] T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005).