Browse > Article
http://dx.doi.org/10.5695/JKISE.2017.50.4.289

CO2 Sensing Properties of SnO2-Cr2O3 Composite Nanofibers Via Electrospinning Method  

Lee, Jae-Hyoung (Department of Materials Science & Engineering, Inha University)
Kim, Jae-Hun (Department of Materials Science & Engineering, Inha University)
Kim, Jin-Young (Department of Materials Science & Engineering, Inha University)
Kim, Sang Sub (Department of Materials Science & Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.50, no.4, 2017 , pp. 289-295 More about this Journal
Abstract
Detection of $CO_2$ gas in both indoor and outdoor atmospheres is now becoming an important issue because of greenhouse effect and climate crisis. In this study, gas sensors based on $SnO_2-Cr_2O_3$ composite nanofibers were fabricated by the electrospinning method to detect $CO_2$ gas. The gas sensors showed a response to ppm level of $CO_2$ gas from room temperature to $200^{\circ}C$ while the highest response was observed at $150^{\circ}C$. The gas response is enhanced by the catalytic property of $Cr_2O_3$. Selective $CO_2$ detection is obtained through the chemical reaction of $Cr_2O_3$ to chromium carbonate. All the results suggest the $SnO_2-Cr_2O_3$ composite material is promising for the use of $CO_2$ gas sensors.
Keywords
Nanofiber; $CO_2$ gas; Gas sensor; Electrospinning; $SnO_2-Cr_2O_3$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. K. Billing, P. K. Agnihotri and N. Singh, Fabrication of branched nanostructures for CNT@Ag nano-hybrids: application in $CO_2$ gas detection, J. Mater. Chem. C 5 (2017) 4226.   DOI
2 H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, M. M.-C. Cheng, Carbon dioxide gas sensor using a graphene sheet, Sens. Actuators B 157 (2011) 310-313.   DOI
3 S. A. Waghuley, S. M. Yenorkar, S. S. Yawale and S. P. Yawale, Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor, Sens. Actuators B 128 (2008) 366-373.   DOI
4 T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi and Y. Takita, Preparation of CuO thin films on porous $BaTiO_3$ by self-assembled multibilayer film formation and application as a $CO_2$ sensor, J. Mater. Chem 8 (1998) 2037-2042.   DOI
5 J.-S. Lee, A. Katoch, J.-H. Kim and S. S. Kim, Growth of networked $TiO_2$ nanowires for gassensing applications, J. Nanosci. Nanotechnol. 16 (2016) 11580-11585.   DOI
6 J.-H. Lee, A. Katoch, S.-W. Choi, J.-H. Kim, H. W. Kim and S. S. Kim, Extraordinary Improvement of gas-sensing performances in $SnO_2$ nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets, ACS Appl. Mater. Interfaces 7 (2015) 3101-3109.   DOI
7 B. Weintraub, Z. Zhou, Y. Li and Yulin Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications, Nanoscale 2 (2010) 1573-1587.   DOI
8 X. Lu, C. Wang and Y. Wei, One-Dim ensional Composite Nanomaterials: Synthesisby electrospinning and their applications, small 5 (2009) 2349-2370.   DOI
9 L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q, Duan and Z.-H. Yuan, Nanopillar ZnO gas sensor for hydrogen and ethanol, Sens. Actuators B 126 (2007) 604-608.   DOI
10 A. Kolmakov and M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res 34 (2004) 151-180.   DOI
11 J.-H. Kim, A. Katoch, H. W. Kim and S. S. Kim, Realization of ppm-level CO detection with exceptionally high sensitivity using reduced graphene oxide-loaded $SnO_2$ nanofibers with simultaneous Au functionalization, Chem. Commun. 52 (2016) 3832.   DOI
12 N. Ma, K. Suematsu, M. Yuasa, T. Kida and K. Shimanoe, Effect of water vapor on Pd-loaded $SnO_2$ nanoparticles gas sensor, ACS Appl. Mater. Interfaces 7 (2015) 5863-5869.   DOI
13 L. Li, S. He, M. Liu, C. Zhang and W. Chen, Three-dimensional mesoporous graphene aerogelsupported $SnO_2$ nanocrystals for high-performance $NO_2$ gas sensing at low temperature, Anal. Chem. 87 (2015) 1638-1645.   DOI
14 Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar and X. Wu, Hierarchical $SnO_2$ Nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications, ACS Appl. Mater. Interfaces 6 (2014) 2174-2184.   DOI
15 J.-H. Kim, A. Mirzaei, H. W. Kim, S. S. Kim, Extremely sensitive and selective sub-ppm CO detection by the synergistic effect of Au nanoparticles and core-shell nanowires, Sens. Actuators B 249 (2017) 177-188.   DOI
16 M. S. Barbosa, P. H. Suman, J. J. Kim, H. L. Tuller, J. A. Varela and M. O. Orlandi, Gas sensor properties of Ag- and Pd-decorated SnO microdisks to $NO_2$, $H_2$ and CO: Catalyst enhanced sensor response and selectivity, Sens. Actuators B 239 (2017) 256-261.
17 A. Katoch, Z. U. Abideen, J.-H. Kim and S. S. Kim, Influence of hollowness variation on the gassensing properties of ZnO hollow nanofibers, Sens. Actuators B 232 (2016) 698-704.   DOI
18 M. H. Al-Marzouqi, S. A. M. Marzouk and N. Abdullatif, High pressure removal of acid gases using hollow fiber membrane contactors: Further characterization and long-term operational stability, J. Nat. Gas. Sci. Eng 37 (2017) 192-198.   DOI
19 J.-H. Kim, H. W. Kim and S. S. Kim, Ultrasensitive benzene detection by a novel approach: core-shell nanowires combined with the Pdfunctionalization, Sens. Actuators B 239 (2017) 578-585.   DOI
20 M. Poloju, N. Jayababu, E. Manikandan and M. V. Ramana Reddy, Enhancement of the isopropanol gas sensing performance of $SnO_2$/ZnO core/shell nanocomposites, J. Mater. Chem. C. 5 (2017) 2662-2668.   DOI
21 Q. Xue, X. Pan, X. Li, J. Zhang and Q. Guo, Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons, Nanotechnology, 28 (2017) 065702.   DOI
22 J.-H. Kim, A. Katoch, S.-H. Kim and S. S. Kim, Chemiresistive sensing behavior of $SnO_2$ (n)-$Cu_2O$(p) core-shell nanowires, ACS Appl. Mater. Interfaces 7 (2015) 15351-15358.   DOI
23 A. Katoch, S.-W. Choi, J.-H. Kim, J. H. Lee, J.-S. Lee and S. S. Kim, Importance of the nanograin size on the $H_2S$-sensing properties of ZnO-CuO composite nanofibers, Sens. Actuators B 214 (2015) 111-116.   DOI
24 Z. U. Abideen, H. W. Kim and S. S. Kim, An ultra-sensitive hydrogen gas sensor using reduced graphene oxide-loaded ZnO nanofibers, Chem. Commun. 51 (2015) 15418.   DOI
25 A. Katoch, J.-H. Kim and S. S. Kim, CuO/$SnO_2$ Mixed nanofibers for $H_2S$ detection, J. Nanosci. Nanotechnol. 15 (2015) 8637-8341.   DOI
26 Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. Macdiarmid and Y. Wei, Highly sensitive and stable humidity nanosensors based on LiCl doped $TiO_2$ electrospun nanofibers, J. Am. Chem. Soc. 130 (2008) 5036-5037.   DOI
27 M. W. Abee, S. C. York and D. F. Cox, $CO_2$ Adsorption on r-$Cr_2O_3$ (1012) surfaces, J. Phys. Chem. B 105 (2001) 7755-7761.   DOI
28 H. Kuhlenbeck, C. Xu, B. Dillmann, M. HaBel, B. Adam, D. Ehrlich, S. Wohlrab, H.-J. Freund, U. A. Ditzinger, H. Neddermeyer, M. Neumann and M. Neuber, Adsorption and reaction on oxide surface-: CO and $CO_2$ on $Cr_2O_3$(111), Ber. Bunsenges. Phys. Chem. 96 (1992) 15-27.   DOI
29 J. Moon, J.-A. Park, S.-J. Lee, T. Zyung and I.-D. Kim, Pd-doped $TiO_2$ nanofiber networks for gas sensor applications, Sens. Actuators B 149 (2010) 301-305.   DOI
30 B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska and J. Augustynski, Metal oxide photoanodes for solar hydrogen production, J. Mater. Chem. 18 (2008) 2298-2303.   DOI
31 M. R. -Nasarabadi, F. Ahmadi, S. Hamdi, N. Eslami, K. Didehban and M. R. Ganjali, Preparation of nanosized chromium carbonate and chromium oxide green pigment through direct carbonation and precursor thermal decomposition, J. Mol. Liq. 216 (216) 814-820.   DOI