References
- D. D. Vuong, G. Sakai, K. Shimanoe, and N. Yamazoe, "Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application", Sens. Actuators B, Vol. 103, pp. 386-391, 2004. https://doi.org/10.1016/j.snb.2004.04.122
-
G. S. Korotchenlov, S. V. Dmitriev, and V. I. Brynzari, "Process development for low cost and low power consuming
$SnO_2$ thin film gas sensors (TFGS)", Sens. Actuators B, Vol. 54, pp. 202-209, 1999. https://doi.org/10.1016/S0925-4005(99)00017-9 -
G. Zhang and M. Liu, "Effect of particle size and dopant on properties of
$SnO_2$ -based gas sensors", Sens. Actuators B, Vol. 69, pp. 144-152, 2000. https://doi.org/10.1016/S0925-4005(00)00528-1 -
Z. Wen and L. Tian-mo, "Gas-sensing properties of
$SnO_2-TiO_2$ -based sensor for volatile organic compound gas and its sensing mechanism", Physica B, Vol. 405, pp. 1345-1348, 2010. https://doi.org/10.1016/j.physb.2009.11.086 - K. S. Kang and S. P. Lee, "CO gas sensors operating at room temperature", J. Mater. Sci., Vol. 38, pp. 4319-4323, 2003. https://doi.org/10.1023/A:1026383031931
- G. Korotcenkov, "The role of morphology and ctystallographic structure of metal oxides in response of conductometric-type gas sensors", Mater. Sci. Eng. R., Vol. 61, pp. 1-39, 2008. https://doi.org/10.1016/j.mser.2008.02.001
-
C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, "Grain size effects on gas sensitivity of porous
$SnO_2$ -based elements", Sens. Actuators B, Vol. 3, pp. 147-155, 1991. https://doi.org/10.1016/0925-4005(91)80207-Z - J. Zhang, B. K. Miremadi, and K. Colbow, "Effects of surface silver additives on tin oxide thin film gas sensors", J. Mater. Sci. Lett., Vol. 13, pp. 1048-1050, 1994.
-
A. R. Phani, "X-ray photoelectron spectroscopy studies on Pd doped
$SnO_2$ liquid petroleum gas sensor", Appl. Phys. Lett., Vol. 71, pp. 2358-2360, 1997. https://doi.org/10.1063/1.120557 -
A. Cabot, A. Dieguez, A. Romano-Rodriguez, J. R. Morante, and N. Barsan, "Influence of the catalytic introduction procedure on the nano-
$SnO_2$ gas sensor performances where and how stay the catalytic atoms?", Sens. Actuators B, Vol. 79, pp. 98-106, 2001. https://doi.org/10.1016/S0925-4005(01)00854-1 -
H. W. Kwon, Y. M. Lim, S. K. Tripathy, B. G. Kim, M. S. Lee, and Y. T. Yu, "Synthesis of Au/
$TiO_2$ core-shell nanoparticles from titanium isopropoxide and thermal resistance effect of$TiO_2$ shell", Jpn. J. Appl. Phys., Vol. 46, pp. 2567-2570, 2007. https://doi.org/10.1143/JJAP.46.2567 -
H. Song, Y. T. Yu, and P. Norby, "Efficient complete oxidation of acetaldehyde into
$CO_2$ over Au/$TiO_2$ core-shell nanocatalyst under UV and visible light irradiation", J. Nanosci. Nanotechnol., Vol. 9, pp. 1-7, 2009. https://doi.org/10.1166/jnn.2009.J01a -
M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. J. Delmon, "Low-temperature oxidation of CO over gold supported on
$TiO_2$ , a-$Fe_2O_3$ , and$Co_3O_4$ ", Catalysis, Vol. 144, pp. 175-192, 1993. https://doi.org/10.1006/jcat.1993.1322
Cited by
- CO gas-sensing properties of CuO-TiN and CuO-TiN-TiO2 prepared by controlled oxidation of Cu-TiN composites vol.21, pp.2, 2015, https://doi.org/10.1007/s12540-015-4135-1
- CO gas-sensing properties of CuO-TiN and CuO-TiO2 prepared via an oxidizing process of a Cu-TiN composite synthesized by a mechanically induced gas-solid reaction vol.20, pp.2, 2014, https://doi.org/10.1007/s12540-014-2027-4