DOI QR코드

DOI QR Code

Effect of Working Temperature on Sensitivity of Au/SnO2 Core-Shell Structure Nanoparticles for CO Gas

Au/SnO2 core-shell 나노구조 센서의 구동온도가 CO 감동에 미치는 영향

  • Yu, Yeon-Tae (Division of Advanced Materials Engineering, Chonbuk National University)
  • Received : 2012.10.11
  • Accepted : 2012.11.22
  • Published : 2012.11.30

Abstract

Au/$SnO_2$ core-shell structure nanoparticles (NPs) were synthesized by microwave hydrothermal method, and the effect of working temperature on sensitivity of Au/$SnO_2$ core-shell NPs for CO gas was investigated. The $SnO_2$ shell layer was consisted of $SnO_2$ primary particles with 4.5 nm diameter. The response of Au/$SnO_2$ core-shell NPs for CO gas was maximized at the working temperature of $350^{\circ}C$ while the sensitivity increased with decreasing the working temperature due to the low grain size effect of $SnO_2$ NPs on the response of CO gas.

Keywords

References

  1. D. D. Vuong, G. Sakai, K. Shimanoe, and N. Yamazoe, "Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application", Sens. Actuators B, Vol. 103, pp. 386-391, 2004. https://doi.org/10.1016/j.snb.2004.04.122
  2. G. S. Korotchenlov, S. V. Dmitriev, and V. I. Brynzari, "Process development for low cost and low power consuming $SnO_2$ thin film gas sensors (TFGS)", Sens. Actuators B, Vol. 54, pp. 202-209, 1999. https://doi.org/10.1016/S0925-4005(99)00017-9
  3. G. Zhang and M. Liu, "Effect of particle size and dopant on properties of $SnO_2$-based gas sensors", Sens. Actuators B, Vol. 69, pp. 144-152, 2000. https://doi.org/10.1016/S0925-4005(00)00528-1
  4. Z. Wen and L. Tian-mo, "Gas-sensing properties of $SnO_2-TiO_2$-based sensor for volatile organic compound gas and its sensing mechanism", Physica B, Vol. 405, pp. 1345-1348, 2010. https://doi.org/10.1016/j.physb.2009.11.086
  5. K. S. Kang and S. P. Lee, "CO gas sensors operating at room temperature", J. Mater. Sci., Vol. 38, pp. 4319-4323, 2003. https://doi.org/10.1023/A:1026383031931
  6. G. Korotcenkov, "The role of morphology and ctystallographic structure of metal oxides in response of conductometric-type gas sensors", Mater. Sci. Eng. R., Vol. 61, pp. 1-39, 2008. https://doi.org/10.1016/j.mser.2008.02.001
  7. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, "Grain size effects on gas sensitivity of porous $SnO_2$-based elements", Sens. Actuators B, Vol. 3, pp. 147-155, 1991. https://doi.org/10.1016/0925-4005(91)80207-Z
  8. J. Zhang, B. K. Miremadi, and K. Colbow, "Effects of surface silver additives on tin oxide thin film gas sensors", J. Mater. Sci. Lett., Vol. 13, pp. 1048-1050, 1994.
  9. A. R. Phani, "X-ray photoelectron spectroscopy studies on Pd doped $SnO_2$ liquid petroleum gas sensor", Appl. Phys. Lett., Vol. 71, pp. 2358-2360, 1997. https://doi.org/10.1063/1.120557
  10. A. Cabot, A. Dieguez, A. Romano-Rodriguez, J. R. Morante, and N. Barsan, "Influence of the catalytic introduction procedure on the nano-$SnO_2$ gas sensor performances where and how stay the catalytic atoms?", Sens. Actuators B, Vol. 79, pp. 98-106, 2001. https://doi.org/10.1016/S0925-4005(01)00854-1
  11. H. W. Kwon, Y. M. Lim, S. K. Tripathy, B. G. Kim, M. S. Lee, and Y. T. Yu, "Synthesis of Au/$TiO_2$ core-shell nanoparticles from titanium isopropoxide and thermal resistance effect of $TiO_2$ shell", Jpn. J. Appl. Phys., Vol. 46, pp. 2567-2570, 2007. https://doi.org/10.1143/JJAP.46.2567
  12. H. Song, Y. T. Yu, and P. Norby, "Efficient complete oxidation of acetaldehyde into $CO_2$ over Au/$TiO_2$ core-shell nanocatalyst under UV and visible light irradiation", J. Nanosci. Nanotechnol., Vol. 9, pp. 1-7, 2009. https://doi.org/10.1166/jnn.2009.J01a
  13. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. J. Delmon, "Low-temperature oxidation of CO over gold supported on $TiO_2$, a-$Fe_2O_3$, and $Co_3O_4$", Catalysis, Vol. 144, pp. 175-192, 1993. https://doi.org/10.1006/jcat.1993.1322

Cited by

  1. CO gas-sensing properties of CuO-TiN and CuO-TiN-TiO2 prepared by controlled oxidation of Cu-TiN composites vol.21, pp.2, 2015, https://doi.org/10.1007/s12540-015-4135-1
  2. CO gas-sensing properties of CuO-TiN and CuO-TiO2 prepared via an oxidizing process of a Cu-TiN composite synthesized by a mechanically induced gas-solid reaction vol.20, pp.2, 2014, https://doi.org/10.1007/s12540-014-2027-4