• Title/Summary/Keyword: SnBi solder

Search Result 110, Processing Time 0.029 seconds

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF

A Study on the Solderability of In and Bi Contained Sn-Ag Alloy (In, Bi를 함유한 Sn-Ag계 무연솔더의 솔더링성 연구)

  • 김문일;문준권;정재필
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.43-47
    • /
    • 2001
  • Sn-3Ag-8Bi-5In was developed for the intermediate melting point solder. Although In-contained solder is expensive, its melting point is lower than these of Sn-Ag-Cu alloys. Sn-3Ag-8Bi-5In solder used for this research has a melting range of 188~$204^{\circ}C$. On this study wetting characteristics of Sn-3Ag-8Bi-5In were evaluated in order to investigate its availability as a Pb-free solder. Wettabilities of Sn-37Pb and Sn-3.5Ag solders were also studied to compare these of the Sn-3Ag-8Bi-5In. Experimental results showed that the zero-cross-time and wetting time at $240^{\circ}C$ for the Sn-3Ag-8Bi-5In were 1.1 and 2.2 second respectively. These values are a little better than these of Sn-37Pb and Sn-3.5Ag solders. The equilibrium wetting farce of the Sn-3Ag-8Bi-5In was 5.8 mN at $240^{\circ}C$, and it was tuned out to be a little higher than that of Sn-3.5Ag and lower than that of Sn-37Pb.

  • PDF

A Study on Properties of Pb-free Solder Joints Combined Sn-Bi-Ag with Sn-Ag-Cu by Conditions of Reflow Soldering Processes (리플로우 솔더링 공정 조건에 따른 Sn-Bi-Ag와 Sn-Ag-Cu 복합 무연 솔더 접합부 특성 연구)

  • Kim, Jahyeon;Cheon, Gyeongyeong;Kim, Dongjin;Park, Young-Bae;Ko, Yong-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • In this study, properties of Pb-free solder joints which were combined using Sn-3.0Ag-0.5Cu (SAC305) Pb-free solder with a mid-temperature type of melting temperature and Sn-57Bi-1Ag Pb-free solder with a low-temperature type of melting temperature were reported. Combined Pb-free solder joints were formed by reflow soldering processes with ball grid array (BGA) packages which have SAC305 solder balls and flame retardant-4 (FR-4) printed circuit boards (PCBs) which printed Sn-57Bi-1Ag solder paste. The reflow soldering processes were performed with two types of temperature profiles and interfacial properties of combined Pb-free solder joints such as interfacial reactions, formations of intermetallic compounds (IMCs), diffusion mechanisms of Bi, and so on were analyzed with the reflow process conditions. In order to compare reliability characteristics of combined Pb-free solder joints, we also conducted thermal shock test and analyzed changes of mechanical properties for joints from a shear test during the thermal shock test.

Microstructure and Mechanical Properties of Sn-3.5wt.%Ag Solder with Bi Addition (Bi를 첨가한 Su-3.5wt.%Ag 땜납의 미세조직 및 기계적 성질)

  • Lee, Kyung-Ku;Baek, Dae-Hwa;Seo, Youn-Jong;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.239-245
    • /
    • 2001
  • Microstructure and mechanical properties of Sn-3.1 wt.%Ag-6.9 wt.%Bi system solders on Cu-substrate were studied. The Sn3.1 wt.%Ag-6.9 wt.%Bi alloy was designed by phase diagram and chemical properties and was prepared by melting in argon atmosphere. The mechanical properties of solder/Cu joints were examined by shear strength test, and also creep test. The microstructure of Sn-3.1 wt.%Ag-6.9 wt.%Bi alloy consists of Bi-rich phase and $Ag_3Sn$ precipitate in {\beta}-Sn$ matrix phase. The shear strength of the joint was decreased with aging treatment. Crack path under shear test was through the solder. Similar crack path change mode was observed at the creep test of solder/Cu joint. The creep behavior of Sn-3.1 wt.%Ag-6.9 wt.%Bi alloy represented the inverse primary creep behavior at all test condition. It is suggested that the inverse primary creep behavior is induced from Bi solute atoms in Sn-matrix. The creep resistance of Sn-3.1Ag-6.9Bi alloy is better than that of Sn-3.5 wt.%Ag alloy at all test conditions.

  • PDF

Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints (Ru Nanoparticle이 첨가된 Sn-58Bi 솔더의 기계적 신뢰성 및 계면반응에 관한 연구)

  • Kim, Byungwoo;Choi, Hyeokgi;Jeon, Hyewon;Lee, Doyeong;Sohn, Yoonchul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 2021
  • Sn-58Bi-xRu composite solders were prepared by adding Ru nanoparticles to Sn-58Bi, a typical low-temperature solder, and the interfacial reaction and solder joint reliability were analyzed by reacting with Cu/OSP and ENIG surface treated PCB boards. The Cu6Sn5 IMC formed by the reaction with Cu/OSP had little change in thickness depending on the Ru content, and ductile fracture occurred inside the solder during the high-speed shear test without any significant change even after 100 hr aging. In reaction with ENIG, the Ni3Sn4 IMC thickness tended to decrease as the Ru content increased, and ENIG-specific brittle fracture was found in some specimens. Since Ru element is not found near the interface, it is judged not to be significantly involved in the interfacial reaction, and it is analyzed that it mainly exists together with the Bi phase.

Chip on Glass Technologies for High-Performance LCD Applications

  • Kim, Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.203-215
    • /
    • 2002
  • Using eutectic In-Ag and Bi-Sn solder materials, we developed the COG technique having a minimum pitch of 50 ${\mu}{\textrm}{m}$. The maximum temperature in this process is $160^{\circ}C$. We fabricated spherical and uniform solder bumps by controlling the microstructure of Bi-Sn solder bumps. The contact resistances of Bi-Sn solder joints were 19 m$\Omega$ at $80{\mu}{\textrm}{m}$ pitch and 60 m$\Omega$ at $80{\mu}{\textrm}{m}$ pitch, respectively. These values are much lower than the contact resistance of the conventional ACF bonding. The contact resistances of the solder joint are almost the same before and after the underfill process. The contact resistance of the underfilled Bi-Sn solder joint did not change even after reliability test.

  • PDF

Development of New COG Technique Using Eutectic Bi-Sn and In-Ag Solder Bumps for Flat Panel Display

  • Kang, Un-Byoung;Kim, Young-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.270-274
    • /
    • 2002
  • We have developed a new COG technique using flip chip solder joining technology for excellent resolution and high quality LCD panels. Using the eutectic Bi-Sn and the eutectic In-Ag solder bumps of 50-80 ${\mu}m$ pitch sizes, a ultrafine interconnection between IC and glass substrate was successfully made at or below $160^{\circ}C$. The contact resistance and reliability of Bi-Sn solder joint showed the superiority over the conventional ACF bonding.

  • PDF

The Solderability and Mechanical Properties of In, Bi Added Sn-9Zn/Cu Joint (In, Bi가 첨가된 Sn-9wt.%Zn/Cu 접합부의 납땜성 및 기계적 성질)

  • Baek, Dae-Hwa;Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • Interfacial reaction and mechanical properties between Sn-Zn-X ternary alloys(X : 3wt.%In, 4wt.%Bi) and Cu-substrate were studied. Cu/solder joints were subjected to aging treatments for up to 50days to see interfacial reaction at $100^{\circ}C$ and then were examined changes of microstructure and interfacial compound by optical microscopy, SEM and EDS. Cu/solder joints were aged to 30days and then loaded to failure at cross head speed of 0.3 mm $min^{-1}$ to measure tensile strength. According to the results of the solderability test, additions of In and Bi in the Sn-9wt.%Zn solder improve the wetting characteristics of the alloy and lower the melting temperature. Through the EDS and XRD analysis of Cu/Sn-9wt.%Zn solder joint, it was concluded that the intermetallic compound was the ${\gamma}-Cu_5Zn_8$ phase. Cu-Zn intermetallics at Cu/solder interfaces played an important role in both the microstructure evolution and failure of solder joints. Cu/solder joint strength was decreased by aging treatment, and those phenomenon was closely related to the thickening of intermetallic layer at Cu/solder joints.

  • PDF

INTERFACIAL REACTION AND STRENGTH OF QFP JOINTS USING SN-ZN-BI SOLDER WITH VARYING LEAD PLATING MATERIALS

  • Iwanishi, Hiroaki;Imamura, Takeshi;Hirose, Akio;Ekobayashi, Kojirou;Tateyama, Kazuki;Mori, Ikuo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.481-486
    • /
    • 2002
  • We have investigated the effects of plating materials for Cu lead (Sn-lOPb, AwPdJNi, Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu) on properties of QFP joints using a Sn-8Zn-3Bi solder. The results were compared with the joints using Sn-3. 5Ag-0. 7Cu and Sn-37Pb solders. As a result, the joints with the Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu plated Cu lead had the reliability comparable to those of the Sn-3.5Ag-0.7Cu and Sn-37Pb soldered joints with respect to the joint strength after the high temperature holding tests at 348K to 423k. In particular, the joint with the Sn-3.5Ag plated Cu lead had the best reliability. This is caused by the low growth rate of a Cu-Sn interfacial reaction layer that degrades the joint strength of the soldered joints. Consequently, the Sn-3.5Ag plating was found to be most feasible plating for the Sn-8Zn-3Bi soldered joint.

  • PDF

Prediction of Thermal Fatigue Life on $\mu$BGA Solder Joint Using Sn-3.5Ag, Sn-3.5Ag-0.7Cu, and Sn-3.5Ag-3.0In-0.5Bi Solder Alloys (Sn-3.5Ag, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-3.0In-0.5Bi Solder를 이용한 $\mu$BGA Solder접합부의 열피로 수명예측)

  • 김연성;김형일;김종민;신영의
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • This paper describes the numerical prediction of the thermal fatigue life of a $\mu$BGA(Micro Ball Grid Array) solder joint. Finite element analysis(FEA) was employed to simulate thermal cycling loading for solder joint reliability. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. The results show that Sn-3.5mass%Ag solder had the longest thermal fatigue life in low cycle fatigue. Also a practical correlation for the prediction of the thermal fatigue life was suggested by using the dimensionless variable ${\gamma}$, which was possible to use several lead free solder alloys for prediction of thermal fatigue life. Furthermore, when the contact angle of the ball and chip has 50 degrees, solder joint has longest fatigue life.