Chip on Glass Technologies for High-Performance LCD Applications

Young-Ho Kim

Div. of Materials Science & Engineering, Hanyang University, Seoul, Korea

Thin Film Materials and Electronic Packaging Lab.

Contents

- ✓ Introduction
 - Requirements and Trend in LCD driver IC packaging technology
 - · Chip on Glass (COG) Technology
 - Approach
- Process development
- Electrical characterization of ultrasmall solder joints
- **▼** Summary

TFT-LCD Display

✓ Structure of TFT-LCD Display

(Sourced by Samsung Electronics)

Key requirements of driver IC packaging

- Higher density connection to the panel
- Lower packaging cost
- Lower product profile
- Acceptable joint resistance
- Lower temperature process
- Reworkability

Thin Film Materials and Electronic Packaging Lab.

Hanyang University

Trend in TFT-LCD Driver IC Packaging Technology

▼ TAB (Tape Automated Bonding)

- Widely used
- Applied to large display
- Minimum pitch \approx 55 μ m

✓ COG (Chip on Glass)

- Slim and simple construction
- High reliability
- Applied to small display

Chip on Glass (COG) Technology

- ✓ Au bump formation on driver IC
- ✓ Bonding using Anisotropic Conductive Film (ACF)
- √ Conventional flip chip bonding using ACF

Thin Film Materials and Electronic Packaging Lab.

Problems of COG Technique Using ACF Due to Ultrafine Pitch Application

√ Increased possibility of electrical short

✓ Increasing contact resistance due to reduced conducting particles in a bump

COG Process Using Solder Bumps

- Conventional method
- Using anisotropic conductive film (ACF)
- New method
- Using flip chip solder joining

▼ Flip chip solder joining process

Thin Film Materials and Electronic Packaging Lab.

Hanyang University

Flip Chip Solder Joining for LCD Driver IC Packaging

- ✓ Advantages
 - Finer pitch capability
 - Self-alignment due to the surface tension of liquid solder
 - Good electrical performance
 - Easy reworkability
- ✓ Problems
 - High temperature process (T > 200 °C)
 - ex) 37Pb-63Sn T_{mp} = 183 °C 95Pb-5Sn T_{mp} = 304 - 312 °C

- √ Approach
 - Using low mp solder
 - 58%Bi-42%Sn(138℃), 97%In-3%Ag(141℃)
 - Flip chip solder joining should be processed below 160°C.

Ultrasmall Solder Bump Formation Using Lift-off Process

Overhang structure is more effective for perfect lift-off conventional one. Perfect lift-off is important for ultrasmall solder bump formation.

Thin Film Materials and Electronic Packaging Lab.

As-deposited Solder Bumps after Lift-off Process

Wetting Characteristics of Bi-Sn Solder on Au/Ni/Ti UBM

· Cross-sectional schematic view of as-deposited solder

Thin Film Materials and Electronic Packaging Lab.

Ultrasmall Bump Formation of In-Ag Solder

Cross-sectional schematic view of as-deposited solder

Ag/In/UBM In/Ag/UBM In/Ag/In/UBM

Deposition Sequence
Pitch size < 100

Pitch size | Pitch

80 70 60 50 40 30 20 10 0 Ag/In In/Ag/In In/Ag

Ball Formation Ratio with Solder Density

e < 100 /m 🔯 Piloh size < 300 /m

Surface Morphology of Bi-Sn Solder Bumps

- · Au/Cu(1 /m)/Cr UBM
- Intermediate cooling rate (10 ℃/min)

Thin Film Materials and Electronic Packaging Lab.

Cross-sectional Images of Bi-Sn Solder Bumps

- Au/Cu(1 畑)/Cr UBM
- Intermediate cooling rate (10 ℃/min)

Finer microstructure makes smoother surface and more spherical shape

Backscattered Electron Images of Bi-Sn Solder Bumps

- Au/Cu(1 /m)/Cr UBM
- Intermediate cooling rate (10℃/min)

The surface morphology is controlled by the microstructure of Bi-Sn solder

Thin Film Materials and Electronic Packaging Lab.

Solder Bumps after Reflow Process

• Peak temperature : 160 ℃

50 /m pitch Bi-Sn solder bumps

80 /m pitch Bi-Sn solder bumps

Ultra-small and spherical solder bumps can be uniformly fabricated. Uniform and smooth solder bumps are suitable for flip chip bonding.

Cross-Sectional SEM Images of Solder Joints

✓ In-Ag solder on Au/Cu/Cr (50 µm pitch) Reflow temperature : 160 °C

The ultrasmall solder joints having 50 /m pitches were assembled successfully.

Thin Film Materials and Electronic Packaging Lab.

SEM Image of Electroplated Bi-Sn Solder Bumps after Reflow

Electrical Test Using Daisy Chain Method

Test vehicle

- Pitch size: 80 /m, 200 /m

- Maximum pad number of a daisy chain: 112

- Solder material: Evaporated eutectic Bi-Sn

Schematic view of electrical test vehicle

Thin Film Materials and Electronic Packaging Lab.

Hanyang University

One Example of Contact Resistance Measurement Data

• 80 /m pitch Bi-Sn solder joint

- Substrate metallization : Au/Cu/Ti

Probing pad	# of solder joints	Total resistance (Ω)	Resistance per section (Ω)	Contact resistace per solder joint (Ω)
A-B	16	0.620	· · · · · · · · · · · · · · · · · · ·	
A-C	32	0.908	0.288	0.0180
A-D	48	1.152	0.244	0.0153
A-E	64	1.474	0.322	0.0201
A-F	80	1.824	0.350	0.0219
A-G	96	2.148	0.324	0.0203
A-H	112	2.484	0.336	0.0210
Avera	0.0194			

Optical Micrograph of Electrical Test Specimen

Thin Film Materials and Electronic Packaging Lab.

Contact Resistance of Ultrasmall Bi-Sn Solder Joints

- · Before underfill process
- · Average value in several specimens

Solder	Chip Metallization	Substrate Metallization	Contact resistance (Measurement)		Contact resistance (Calculation)	
Joint			Average (Ω)	Standard deviation	Average (Ω)	
80 # Pitch	Au/Cu/Ti	Au/Cu/Ti	0.019	0.003	0.008	
Bi-Sn Solder		Au/Ni/Cu/Ti	0.035	0.006	0.012	
50 # Pitch Bi-Sn Solder	Au/Cu/Ti	Au/Cu/Ti	0.060	0.019	0.042	

The contact resistance of Bi-Sn solder joints is much lower than that of conventional ACF bonding for COG technique.

Contact Resistance of Solder Joints after Underfill

Underfill process

- Material : Epoxy (AMICON E 1355)

- Curing condition: 160°C, 5 min holding

Solder Joint	Chip Metallization	Substrate Metallization	Underfill	Average contact resistance (Ω)	Standard deviation	
80 m Pitch Bi-Sn Solder	Au/Cu/Ti	Au/Cu/Ti	Before Underfill	0.019	0.004	
			After Underfill	0.023	0.007	

Thin Film Materials and Electronic Packaging Lab.

Hanyang University

Contact Resistance after 85 C/85% RH Storage

The contact resistances of Bi-Sn solder joints did not change even after hot humidity test.

Summary

- Using eutectic In-Ag and Bi-Sn solder materials, we developed the COG technique having a minimum pitch of 50 μ m. The maximum temperature in this process is 160 $^{\circ}$ C.
- We fabricated spherical and uniform solder bumps by controlling the microstructure of Bi-Sn solder bumps.
- The contact resistances of Bi-Sn solder joints were 19 m Ω at 80 μ m pitch and 60 m Ω at 50 μ m pitch, respectively. These values are much lower than the contact resistance of the conventional ACF bonding.
- The contact resistances of the solder joint are almost the same before and after the underfill process. The contact resistance of the underfilled Bi-Sn solder joint did not change even after reliability test.