• Title/Summary/Keyword: Sn-Pb solder

Search Result 271, Processing Time 0.023 seconds

Characteristics of Joint Between Ag-Pd Thick Film Conductor and Solder Bump and Interfacial Reaction (Ag-Pd 후막도체와 솔더범프 사이의 접합특성 및 계면반응)

  • 김경섭;한완옥;이종남;양택진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the ECM(Engine Control Module) alumina substrate and the intermetallic compound layer between Sn-37wt%Pb solder and pad joints after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, conductor pad roughness were increased from 304 nm to 330 nm. $Cu_6/Sn_5$ formed during initial reflow process at the interface between TiWN/Cu pad and solder grew by the succeeding reflow process, so the grains became coarse. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about 0.1∼0.6 $\mu\textrm{m}$. And a needle-shaped was also observed at the inside of the solder.

  • PDF

Influence of Polarization Behaviors on the ECM Characteristics of SnPb Solder Alloys in PCB (PCB에서의 ECM 특성에 미치는 SnPb 솔더 합금의 분극거동의 영향)

  • Lee Shin-Bok;Yoo Young-Ran;Jung Ja-Young;Park Young-Bae;Kim Young-Sik;Joo Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.167-174
    • /
    • 2005
  • Smaller size and higher integration of electronic components make smaller gap between metal conducting layers in electronic package. Under harsh environmental conditions (high temperature/humidity), electronic component respond to applied voltages by electrochemically ionization of metal and metal filament formation, which lead to short failure and this phenomenon is termed electrochemical migration(ECM). In this work, printed circuit board(PCB) is used for determination of ECM characteristics. Copper leads of PCB are soldered by eutectic solder alloys. Insulation breakdown time is measured at $85^{\circ}C,\;85{\%}RH$. CAF is the main mechanism of ECM at PCB. Pb is more susceptible to CAF rather than Sn, which corresponds well to the corrosion resistance of solder materials in aqueous environment. Polarization tests in chloride or chloride-free solutions fur pure metal and eutectic solder alloys are performed to understand ECM characteristics. Lifetime results show well defined log-normal distribution which resulted in biased voltage factor(n=2) by voltage scaling. Details on migration mechanism and lifetime statistics will be presented and discussed.

  • PDF

Effect of Test Parameter on Ball Shear Properties for BGA and Flip Chip Packages (BGA 및 Flip Chip 패키지의 볼전단 특성에 미치는 시험변수의 영향)

  • Gu, Ja-Myeong;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.19-21
    • /
    • 2005
  • The ball shea. tests for ball grid array (BGA) and flip chip packages were carried out with different displacement rates to find out the optimum condition of the displacement rate for this test. The BGA packages consisted of two different kinds of solder balls (eutectic Sn-37wt.%Pb and Sn-3.5wt.%Ag) and electroplated Au/Ni/Cu substrate, whereas the flip chip package consisted of electroplated Sn-37Pb solder and Cu UBM. The packages were reflowed up to 10 times, or aged at 443 K up to 21 days. The variation of the displacement rate resulted in the variations of the shear properties such as shear force, displacement rate at break, fracture mode and strain rate sensitivity. The increase in the displacement rate led to the increase of the shear force and brittleness of solder joints.

  • PDF

Formation Mechanisms of Sn Oxide Films on Probe Pins Contacted with Pb-Free Solder Bumps (무연솔더 범프 접촉 탐침 핀의 Sn 산화막 형성 기제)

  • Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.545-551
    • /
    • 2012
  • In semiconductor manufacturing, the circuit integrity of packaged BGA devices is tested by measuring electrical resistance using test sockets. Test sockets have been reported to often fail earlier than the expected life-time due to high contact resistance. This has been attributed to the formation of Sn oxide films on the Au coating layer of the probe pins loaded on the socket. Similar to contact failure, and known as "fretting", this process widely occurs between two conductive surfaces due to the continual rupture and accumulation of oxide films. However, the failure mechanism at the probe pin differs from fretting. In this study, the microstructural processes and formation mechanisms of Sn oxide films developed on the probe pin surface were investigated. Failure analysis was conducted mainly by FIB-FESEM observations, along with EDX, AES, and XRD analyses. Soft and fresh Sn was found to be transferred repeatedly from the solder bump to the Au surface of the probe pins; it was then instantly oxidized to SnO. The $SnO_2$ phase is a more stable natural oxide, but SnO has been proved to grow on Sn thin film at low temperature (< $150^{\circ}C$). Further oxidation to $SnO_2$ is thought to be limited to 30%. The SnO film grew layer by layer up to 571 nm after testing of 50,500 cycles (1 nm/100 cycle). This resulted in the increase of contact resistance and thus of signal delay between the probe pin and the solder bump.

Effects of Temperature and Mechanical Deformation on the Microhardness of Lead free and Composite Solders (무연 복합 솔더의 미소경도에 미치는 기계적 변형과 온도의 영향)

  • Lee Joo Won;Kang Sung K.;Lee Hyuck Mo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.121-128
    • /
    • 2005
  • Solder joints in microelectronic devices are frequently operated at an elevated temperature in service. They also experience plastic deformation caused by temperature excursion and difference in thermal expansion coefficients. Deformed solders can go through a recovery and recrystallization process at an elevated temperature, which would alter their microstructure and mechanical properties. In this study, to predict the changes in mechanical properties of Pb-free solder joints at high temperatures, the high temperature microhardness of several Pb-free and composite solders was measured as a function of temperature, deformation, and annealing condition. Solder alleys investigated include pure Sn, Sn-0.7Cu, Sn-3.5Ag, Sn-3.8Ag-0.7Cu, Sn-2.8Ag-7.0Cu (composite), and Sn-2.7Ag-4.9Cu-2.9Ni (composite). Numbers are all in wt.$\%$ unless specified otherwise. Solder pellets were cast at two cooling rates (0.4 and $7^{\circ}C$/s). The pellets were compressively deformed by $30\%$ and $50\%$ and annealed at $150^{\circ}C$ for 2 days. The microhardness was measured as a function of indentation temperature from 25 to $130^{\circ}C$. Their microstructure was also evaluated to correlate with the changes in microhardness.

  • PDF

The Microstructure and Interfacial Reaction between Sn-3.5wt.%Ag-1wt.%Zn and Cu Substrate (Sn-3.5wt.%Ag-1wt.%Zn 땜납과 Cu기판간의 미세조직 및 계면반응)

  • Baek, Dae-Hwa;Seo, Youn-Jong;Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • This study examined the effects of adding Zn to Sn-3.5Ag solder on the microstructure changes and behavior of interface reaction of the solder joint with Cu substrate. The solder/Cu joints were examined with microscope to observe the characteristics of microstructure changes and interfacial reaction layer with aging treatment for up to 120 days at $150^{\circ}C$. Results of the microstructure changes showed that the microstructures were coarsened with aging treatment, while adding 1%Zn suppresses coarsening microstructures. The Sn-3.5Ag/Cu had a fast growth rate of the reaction layer in comparison with the Sn-3.5Ag-1Zn at the aging temperature of $150^{\circ}C$. Through the SEM/EDS analysis of solder joint, it was proved that intermetallic layer was $Cu_6Sn_5$ phase and aged specimens showed that intermetallic layer grew in proportion to $t^{1/2}$, and the precipitate of $Ag_3Sn$ occur to both inner layer and interface of layer and solder. In case of Zn-containing composite solder, $Cu_6Sn_5$ phase formed at the side of substrate and Cu-Zn-Sn phase formed at the other side in double layer. It seems that Cu-Zn-Sn phase formed at solder side did a roll of banrier to suppress the growth of the $Cu_6Sn_5$ layer during the aging treatment.

Influence of Thermal Aging at the Interface Cu/sn-Ag-Cu Solder Bump Made by Electroplating (전해도금에 의해 형성된 Sn-Ag-Cu 솔더범프와 Cu 계면에서의 열 시효의 영향)

  • Lee, Se-Hyeong;Sin, Ui-Seon;Lee, Chang-U;Kim, Jun-Gi;Kim, Jeong-Han
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.235-237
    • /
    • 2007
  • In this paper, fabrication of Sn-3.0Ag-0.5Cu solder bumping having accurate composition and behavior of intermetallic compounds(IMCs) growth at interface between Sn-Ag-Cu bumps and Cu substrate were studied. The ternary alloy of the Sn-3.0Ag-0.5Cu solder was made by two binary(Sn-Cu, Sn-Ag) electroplating on Cu pad. For the manufacturing of the micro-bumps, photo-lithography and reflow process were carried out. After reflow process, the micro-bumps were aged at $150^{\circ}C$ during 1 hr to 500 hrs to observe behavior of IMCs growth at interface. As a different of Cu contents(0.5 or 2wt%) at Sn-Cu layer, behavior of IMCs was estimated. The interface were observed by FE-SEM and TEM for estimating of their each IMCs volume ratio and crystallographic-structure, respectively. From the results, it was found that the thickness of $Cu_3Sn$ layer formed at Sn-2.0Cu was thinner than the thickness of that layer be formed Sn-0.5Cu. After aging treatment $Cu_3Sn$ was formed at Sn-0.5Cu layer far thinner.

  • PDF

Tafel Characteristics by Electrochemical Reaction of SnAgCu Pb-Free Solder (SnAgCu계 무연솔더의 전기화학적 반응에 따른 타펠 특성)

  • Hong Won Sik;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.536-542
    • /
    • 2005
  • Recently European Council(EU) published the RoHS(restriction of the use of certain hazardous substances in electrical and electronic equipment) which is prohibit the use of Pb, Hg, Cd, $Cr^{+6}$, PBB or PBDE in the electrical and electronic equipments. So EU member States shall ensure that, from 1 July 2006, new electrical and electronic equipment put on the market does not contain 6 hazardous substances. The one of the most important in electronics manufacturing process is soldering. Soldering process use the chemical substances which are applied in fluxing and cleaning processes and it can generate the malfunction of electronics caused by corrosion in the fields conditions. Therefore this study researched on the polarization and Tafel properties of Sn40Pb and Sn3.0Ag0.5Cu(SAC) solder based on the electrochemical theory. We prepared SnPb specimens which was aged in $150^{\circ}C,\;180^{\circ}C$ for 15 minutes ana Sn3.0Ag0.5Cu specimens that was aged in $180^{\circ}C,\;220^{\circ}C$ for 10 minutes. Experimental polarization curves were measured in distilled ionized water and $3.5 wt\%$, 1 mole NaCl electrolyte of $40^{\circ}C$, pH 7.5. Ag/AgCl and graphite were utilized by reference and counter electrode, respectively. To observe the electrochemical reaction, polarization test was conducted from -250 mV to +250 mV. From the polarization curves that were composed of anodic and cathodic curves, we obtained Tafel slop, reversible electrode potential(Ecorr) and exchange current density(Icorr). In these results, corrosion rate for two specimen were compared Sn3.0Ag0.5Cu with SnPb solders

Mechanical Characteristic Evaluation of Sn-Ag-Cu Lead Free Solder Ball Joint on The Pad Geometry (패드 구조에 따른 Sn-Ag-Cu계 무연 솔더볼 접합부의 기계적 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of PCB and BGA pad designs was investigated on the mechanical property of Pb-free solder joints. The mechanical property of solder joint was tested by three different test methods of drop impact tests, bending impact test, and high speed shear test. Two kinds of pad design such as NSMD (Non-Solder Mask Defined) and SMD (Solder Mask Defined) were applied with the OSP finished Pb-free solder (Sn-3.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu). in the drop impact test and bending impact test, the characterized lifetime showed the same tendency, and SMD design showed better mechanical property of solder joint than NSMD regardless of test method, which was due to the different crack path. The fracture crack on SMD pad was propagated along the intermetallic compound (IMC) layer of solder joint, while the fracture crack on NSMD pad propagated through upper edge of land which shields pattern. In the high speed shear test, pad lift occurred on the solder joint of NSMD. SMD/SMD combination of pad design consequently illustrated the best mechanical property of BGA/PCB solder joint, followed by SMD/NSMD, NSMD/SMD, and NSMD/NSMD.