• Title/Summary/Keyword: Sn-Cu-Ni solder

Search Result 123, Processing Time 0.023 seconds

Brittle Fracture Behavior of ENIG/Sn-Ag-Cu Solder Joint with pH of Ni-P Electroless Plating Solution (무전해 니켈 도금액 pH 변화에 따른 ENIG/Sn-Ag-Cu솔더 접합부의 취성파괴 특성)

  • Seo, Wonil;Lee, Tae-Ik;Kim, Young-Ho;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.29-34
    • /
    • 2020
  • The behavior of brittle fracture of electroless nickel immersion gold (ENIG) /Sn-3.0wt.%Ag-0.5wt.%Cu (SAC305) solder joints was evaluated. The pH of the electroless nickel plating solution for ENIG surface treatment was changed from 4.0 to 5.5. As the pH of the Ni plating solution increased, pin hole in the Ni-P layer increased. The thickness of the interfacial intermetallic compound (IMC) of the solder joint increased with pH of Ni plating solution. The high speed shear strength of the SAC305 solder joint on ENIG surface finish decreased with the pH of the Ni plating solution. In addition, the brittle fracture rate of the solder joint was the highest when the pH of the Ni plating solution was 5.

A Study on Characteristics of Sn-37Pb and Sn-4.0Ag-0.5Cu Solder Joints as Various A:V Ratio (A:V Ratio 변화에 따른 Sn-37Pb, Sn-4.0Ag-0.5Cu Solder 접합부의 특성 연구)

  • Han, Hyun-Joo;Lim, Seok-Jun;Moon, Jung-Tak;Lee, Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.67-73
    • /
    • 2001
  • To investigate the relationships of solder joint characteristics with solder composition and A:V ratio (solder volume per pad area), Sn-37Pb and Sn-4.0Ag-0.5Cu solder balls with 330, 400, 450 and $457{\mu}{\textrm}{m}$ size were reflowed on same substrate. Sn-37Pb and Sn-4.0Ag-0.5Cu was reflowed at $220^{\circ}C$ and $240^{\circ}C$ respectively by IR-type soldering machine. As a result of reflowed solder- ball diameter(D) and height(H) measurement, D/H was decreased with solder ball size increment in range of 330~450 ${\mu}{\textrm}{m}$. But, D/H was increased in the solder joint for 457 ${\mu}{\textrm}{m}$ size, it was caused possibly by decrement of solder ball height increment compared with solder volume increment. As a result of shear and pull test, joint strength with A:V ratio was high. Joint strength of Sn-4.0Ag-0.5Cu was higher than Sn-37Pb. However, Sn-37Pb had more stable solder joint of small standard deviation. A thick and clean scallop type Ni-Cu-Sn intermetallic compound layer was formed in high A:V ratio and Sn-4.0Ag-0.5Cu solder joint interface.

  • PDF

Effect of Different Aging Times on Sn-Ag-Cu Solder Alloy

  • Ervina Efzan, M.N.;Siti Norfarhani, I.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.112-116
    • /
    • 2015
  • This work studied the thickness and contact angle of solder joints between SAC 305 lead-free solder alloy and a Copper (Cu) substrate. Intermetallic compound (IMC) thickness and contact angle of 3Sn-Ag-0.5Cu (SAC 305) leadfree solder were measured using varying aging times, at a fixed temperature at 30℃. The thickness of IMC and contact angle depend on the aging time. IMC thickness increases as the aging increases. The contact angle gradually decreased from 39.49° to 27.59° as aging time increased from zero to 24 hours for big solder sample. Meanwhile, for small solder sample, the contact angle increased from 32.00° to 40.53° from zero to 24 hours. The IMC thickness sharply increased from 0.007 mm to 0.011 mm from zero to 24 hours aging time for big solder. In spite of that, for small solder the IMC thickness gradually increased from 0.009 mm to 0.017 mm. XRD analysis was used to confirm the intermetallic formation inside the sample. Cu6Sn5, Cu3Sn, Ni3Sn and Ni3Sn2 IMC layers were formed between the solder and the copper substrate. As the aging time increased, the strength of the solder joint mproved due to reduced contact angle.

Aging Characteristics of Sn-1.8Bi-0.7Cu-0.6In Solder (스텐실 프린트법으로 인쇄한 Sn-1.8Bi-0.7Cu-0.6In 솔더의 고온 시효 특성)

  • Lee Jaesik;Cho Sun-Yun;Lee Young-Woo;Kim Kyoo-Suk;Cheon Chu-Seon;Jung Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.301-306
    • /
    • 2005
  • Aging characteristics of newly developed Sn-1.8Bi-0.7Cu-0.6In solder was evaluated by shear strength and microstructure. Stencil printing was applied to form solder. The shear strength of Sn-1.8Bi-0.7Cu-0.6In at $150^{\circ}C$ showed the highest values through aging. Intermetallic compounds formed on the interface between solder and Au/Cu/Ni/Al UBM were $(Cu,\;Ni)_6Sn_5$ Furthermore, it was found that Spatting of Intermetallic compounds started before 500h aging at $150^{\circ}C$.

  • PDF

INTERFACIAL REACTIONS BETWEEN SN-58MASS%BI EUTECTIC SOLDER AND (CU, ELECTROLESS NI-P/CU)SUBSTRATE

  • Yoon, Jeong-Won;Lee, hang-Bae;Park, Guang-Jin;Shin, Young-Eui;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.487-492
    • /
    • 2002
  • The growth kinetics of intermetallic compound layers formed between eutectic Sn-58Bi solder and (Cu, electroless Ni-P/Cu) substrate were investigated at temperature between 70 and 120 C for 1 to 60 days. The layer growth of intermetallic compound in the couple of the Sn-58Bi/Cu and Sn-58Bi/electroless Ni-P system satisfied the parabolic law at given temperature range. As a whole, because the values of time exponent (n) have approximately 0.5, the layer growth of the intermetallic compound was mainly controlled by volume diffusion over the temperature range studied. The apparent activation energies of Cu$_{6}$Sn$_{5}$ and Ni$_3$Sn$_4$ intermetallic compound in the couple of the Sn-58Bi/Cu and Sn-58Bi/electroless Ni-P were 127.9 and 81.6 kJ/mol, respectively.ely.

  • PDF

Board level joint reliability of differently finished PWB pad (PCB Pad finish 방법에 따른 solder의 Board level joint reliability)

  • Lee W. J.;Moon H. J.;Kim Y. H.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.02a
    • /
    • pp.37-59
    • /
    • 2004
  • In the case of Ni/Au finished pad on the package side, the solder joint of SnAgCu system can bring brittle fracture under impact load such as drop test. Therefore, it's difficult to prevent the brittle fracture of lead-free solder, by controlling Cu content. The failure locus existing on the interface between $(Ni,Cu)_3Sn_4\;and\;(Cu,Ni)_6Sn_5$ IMC layers must be changed to other site in order to avoid brittle fracture due to impact load. It was not found any clear evidence that there were two IMC layers exist. But it was strongly assumed these were two layers which have different Cu-Ni composition. From the above analysis it was assumed that Cu atom in the solder alloy or substrate seemed to affect IMC composition and cause to IMC brittle fracture.

  • PDF

Intermetallic Compound Formation Behavior and Bump Shear strength at Sn-In Eutectic Solder/UBM Interface

  • Choi Jae-Hoon;Jun Sung-Woo;Jung Boo-Yang;Oh Tae-Sun;Kim Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.99-102
    • /
    • 2003
  • Reactions between 48Sn-52In solder and under bump metallurgies(UBM) such as 100nm $Ti/8{\mu}m$ Cu and 300nm Al/400nm Ni(V)/400nm Cu have been investigated, and the shear strength of 48Sn-52In solder bumps on each UBM has been evaluated. While intermetallic compounds with two different morphologies were continuously thickened on Ti/Cu with repeating the reflow process, the intermetallics on Al/Ni(V)/Cu spalled into the solder with increasing the number of reflow times. The solder bumps on Ti/Cu exhibited higher shear strength than those on Al/Ni(V)/Cu.

  • PDF

Shear Strength of the ${Cu_6}{Sn_5}$-dispersed Sn-Pb Solder Bumps Fabricated by Screen Printing Process (${Cu_6}{Sn_5}$를 분산시켜 스크린 프린팅법으로 제조한 Sn-Pb 솔더범프의 전단강도)

  • Choe, Jin-Won;Lee, Gwang-Eung;Cha, Ho-Seop;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.799-806
    • /
    • 2000
  • Cu$_{6}$Sn$_{5}$-dispersed 63Sn-37Pb solder bumps of 760$\mu\textrm{m}$ size were fabricated on Au(0.5$\mu\textrm{m}$)/Ni(5$\mu\textrm{m}$)/Cu(27$\pm$20$\mu\textrm{m}$) BGA substrates by screen printing process, and their shear strength were characterized with variations of dwell time at reflow peak temperature and aging time at 15$0^{\circ}C$ . With dwell time of 30 seconds at reflow peak temperature, the solder bumps with Cu$_{6}$Sn$_{5}$ dispersion exhibited higher shear strength than the value of the 63Sn-37Pb solder bump. With increasing the dwell time longer than 60 seconds, however the shear strength of the Cu$_{6}$Sn$_{5}$-dispersed solder bumps became lower than that the 63Sn-37Pb solder bumps. The failure surface of the solder bumps could be divided into two legions of slow crack propagation and critical crack propagation. The shear strength of the solder bumps was inversely proportional to the slow crack propagation length, regardless of the dwell time at peak temperature, aging time at 150 $^{\circ}C$ and the volume fraction of Cu$_{6}$Sn$_{5}$ dispersion.> 5/ dispersion.

  • PDF

The micorstructure and strength of SnCuX Solder joint (SnCuX계 솔더를 이용한 무연 솔더링에서의 계면구조와 기계적 특성)

  • 이재식;박지호;문준권;정재필
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.55-58
    • /
    • 2002
  • The possibility of SnCuX Solder as alternative for Pb-free Solder have been investigated in this study. SnCuX Solder balls(500${\mu}{\textrm}{m}$) were placed on Si-wafer which is Al/Ni/Cu(500nm/$4{\mu}{\textrm}{m}$/$4{\mu}{\textrm}{m}$)UBM layer. After reflow soldering at $250^{\circ}C$, shear strength and microstructure were analyzed. The results showed that the shear strength(500gf) of SnCuX was higher than that of SnCuX at $230^{\circ}C$ and $Cu_6Sn_5$ intermetallic compounds were formed between Cu and SnCuX Solder layers

  • PDF

Effect of Under Bump Metallization (UBM) on Interfacial Reaction and Shear Strength of Electroplated Pure Tin Solder Bump (전해 도금된 주석 솔더 범프의 계면 반응과 전단 강도에 미치는 UBM의 효과)

  • Kim, Yu-Na;Koo, Ja-Myeong;Park, Sun-Kyu;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • The interfacial reactions and shear strength of pure Sn solder bump were investigated with different under bump metallizations (UBMs) and reflow numbers. Two different UBMs were employed in this study: Cu and Ni. Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) were formed at the bump/Cu UBM interface, whereas only a Ni3Sn4 IMC was formed at the bump/Ni UBM interface. These IMCs grew with increasing reflow number. The growth of the Cu-Sn IMCs was faster than that of the Ni-Sn IMC. These interfacial reactions greatly affected the shear properties of the bumps.