• Title/Summary/Keyword: Sn-Ag

Search Result 620, Processing Time 0.026 seconds

Brittle Fracture Behavior of ENIG/Sn-Ag-Cu Solder Joint with pH of Ni-P Electroless Plating Solution (무전해 니켈 도금액 pH 변화에 따른 ENIG/Sn-Ag-Cu솔더 접합부의 취성파괴 특성)

  • Seo, Wonil;Lee, Tae-Ik;Kim, Young-Ho;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.29-34
    • /
    • 2020
  • The behavior of brittle fracture of electroless nickel immersion gold (ENIG) /Sn-3.0wt.%Ag-0.5wt.%Cu (SAC305) solder joints was evaluated. The pH of the electroless nickel plating solution for ENIG surface treatment was changed from 4.0 to 5.5. As the pH of the Ni plating solution increased, pin hole in the Ni-P layer increased. The thickness of the interfacial intermetallic compound (IMC) of the solder joint increased with pH of Ni plating solution. The high speed shear strength of the SAC305 solder joint on ENIG surface finish decreased with the pH of the Ni plating solution. In addition, the brittle fracture rate of the solder joint was the highest when the pH of the Ni plating solution was 5.

Facile Synthesis, Characterization and Photocatalytic Activity of MWCNT-Supported Metal Sulfide Composites under Visible Light Irradiation

  • Zhu, Lei;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.155-160
    • /
    • 2012
  • This paper reported a simple deposition-precipitation method, introducing the metal (Ni, Ag and Sn) and $Na_2S{\cdot}5H_2O$ to preparedispersion metal sulfide nanoparticles on the surface of the Multi-walled carbon nanotube for synthesis of CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composite photocatalysts. The characterization of the prepared CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composites was performed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis and BET analysis. Furthermore, the MB degradation rate constant for CNT-SnS composite was $5.68{\times}10^{-3}$ under visible light irradiation, which was much higher than the corresponding values for other samples. The detailed formation and photocatalytic mechanism are also provided here.

Wettability Analysis of Liquid Phase in Partial Melted Solders Using Wetting Balance

  • Park, J.Y.;Ha, J.S.;Kang, C.S.;Kim, M.I.;Shin, K.S.;Jung, J.P.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.81-86
    • /
    • 2000
  • To evaluate the possibility of the partial melting soldering. wettability of partial melted solders was measured using wetting balance. Off eutectic Sn-Pb allows are wettable in their partial melting zone. Especially, Pb rich alloys showed excellent wettability while wettability of Sn rich alloys were adequate or poor. It is found that wettability increases over $200^{\circ}C$ regardless of composition liquid fraction and phases of the original alloy Sn-7Ag alloy showed good wettability in their partial melting zone, while Sn-65Bi alloy was non-wettable under their melting points.

  • PDF

The Fluxless Wetting Properties of UBM-Coated Si-Wafer to the Pb-Free Solders (UBM이 단면 증착된 Si-Wafer에 대한 Pb-free 솔더의 무플럭스 젖음 특성)

  • 홍순민;박재용;김문일;정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.74-82
    • /
    • 2000
  • The fluxless wetting properties of UBM-coated Si-wafer to the binary lead-free solders(Sn-Ag, Sn-Sb, Sjn-In, Sn0Bi) were estimated by wetting balance method. With the new wettability indices from the wetting curves of one side coated specimen, the wetting property estimation of UBM-coated Si-wafer was possible. For UBM of Si-chip, Au/Cu/Cr UBm was better than au/Ni/TI in the point of wetting time/ At general reflow process temperature, the wettability of high melting point solders(Sn-Sb, Sn-Ag) was better than that of low melting point one(Sn-Bi, Sn-In). The contact angle of the one side coated Si-plate to the solder could be calculated from the force balance equation by measuring the static state force and the tilt angle.

  • PDF

Characteristics of SAC305 and Nano-Particle Dispersed Solders (SAC305 및 나노 입자 분산 솔더의 특성)

  • Kim, Jang Baeg;Seo, Seong Min;Kang, Hye Jun;Cho, Do Hoon;Rajendran, Sri Harini;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • Sn-3wt%Ag-0.5wt%Cu (SAC305) solder is most popular solder in electronics industry. However, SAC305 has also drawbacks such as growth of β-Sn phase, intermetallic compounds (IMCs) of Ag3Sn, Cu6Sn5 and Cu3Sn which can result in deterioration of solder joints in terms of metallurgically, mechanically and electrically. Thus, improvement of SAC305 solders have been investigated continuously by addition of alloying elements, nano-particles and etc. In this paper, recent improvements of SAC solders including nano-composite alloys and related solderabilty and metallurgical and mechanical properties are investigated.

Antireflective ZTO/Ag bilayer-based transparent source and drain electrodes for highly transparent thin film transistors

  • Choe, Gwang-Hyeok;Kim, Han-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.2-110.2
    • /
    • 2012
  • We reported on antireflective ZnSnO (ZTO)/Ag bilayer and ZTO/Ag/ZTO trilayer source/drain (S/D) electrodes for all-transparent ZTO channel based thin film transistors (TFTs). The ZTO/Ag bilayer is more transparent (83.71%) and effective source/drain (S/D) electrodes for the ZTO channel/Al2O3 gate dielectric/ITO gate electrode/glass structure than ZTO/Ag/ZTO trilayer because the bottom ZTO layer in the trilayer increasea contact resistance between S/D electrodes and ZTO channel layer and reduce the antireflection effect. The ZTO based all-transparent TFTs with ZTO/Ag bilayer S/D electrode showed a saturation mobility of 4.54cm2/Vs and switching property (1.31V/decade) comparable to TTFT with Ag S/D electrodes.

  • PDF

Effects of PCB Surface Finishes on in-situ Intermetallics Growth and Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (PCB 표면처리에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 in-situ 금속간 화합물 성장 및 Electromigration 특성 분석)

  • Kim, Sung-Hyuk;Park, Gyu-Tae;Lee, Byeong-Rok;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • The effects of electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) surface finishes on the in-situ intermetallics reaction and the electromigration (EM) reliability of Sn-3.0Ag-0.5Cu (SAC305) solder bump were systematically investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of the ENIG surface finish at solder top side, while at the OSP surface finish at solder bottom side,$ Cu_6Sn_5$ and $Cu_3Sn$ IMCs were formed. Mean time to failure on SAC305 solder bump at $130^{\circ}C$ with a current density of $5.0{\times}10^3A/cm^2$ was 78.7 hrs. EM open failure was observed at bottom OSP surface finish by fast consumption of Cu atoms when electrons flow from bottom Cu substrate to solder. In-situ scanning electron microscope analysis showed that IMC growth rate of ENIG surface finish was much lower than that of the OSP surface finish. Therefore, EM reliability of ENIG surface finish was higher than that of OSP surface finish due to its superior barrier stability to IMC reaction.

Oxidation characteristics of solder alloys for the photovoltaic module (태양전지 묘듈용 솔드 합금의 산화 특성)

  • Kim, Hyo Jae;Lee, Young Eun;Lee, Gu;Kang, Gi Hwan;Choi, Byung Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • Photovoltaic (PV) cell is considered as one of the finest ways to utilize the solar power. A study of improving solar cell's efficiency is important because the lifetime of solar cell is determined by photovoltaic module technology. Therefore, oxidation (and/or corrosion) of solder materials will be one of the primary yield and long-term reliability risk factor. Recently, the development of lead-free solder alloy has been done actively about lead-free solder alloys of the thermodynamic and mechanical properties. However, the oxidation behavior have rarely been investigated In this study, the oxidations of 60 wt% Sn-40 wt% Pb, 62 wt% Sn-36 wt% Pb -2 wt% Ag, 50wt% Sn-48 wt% Bi-2 wt% Ag alloys for the interconnect ribbon after exposure in atmosphere at $100^{\circ}C$ for several times were investigated. The wettability of 62 wt% Sn-36 wt% Pb-2 wt% Ag and 50 wt% Sn-48 wt% Bi-2 wt% Ag solders was also studied to compare with that of 60 wt% Sn-40 wt% Pb alloy. The results howed that the zero cross time and the wetting time of 50 wt% Sn-48 wt% Bi-2 wt% Ag solder were better than other two samples. The surface of tested samples was analyzed by XPS. The XPS result showed that in all samples, SnO grew first and then the mixture of SnO and $SnO_2$ was detected. $SnO_2$ grew predominantly for the long time aging. Moreover XPS depth profile analysis has found surface enrichment of tin oxide.

Bonding Strength of Cu/SnAgCu Joint Measured with Thermal Degradation of OSP Surface Finish (OSP 표면처리의 열적 열화에 따른 Cu/SnAgCu 접합부의 접합강도)

  • Hong, Won-Sik;Jung, Jae-Seong;Oh, Chul-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • Bonding strength of Sn-3.0Ag-0.5Cu solder joint due to degradation characteristic of OSP surface finish was investigated, compared with SnPb finish. The thickness variation and degradation mechanism of organic solderability preservative(OSP) coating were also analyzed with the number of reflow process. To analyze the degradation degree of solder joint strength, FR-4 PCB coated with OSP and SnPb were experienced preheat treatment as a function of reflow number from 1st to 6th pass, respectively. After 2012 chip resistors were soldered with Sn-3.0Ag-0.5Cu on the pre-heated PCB, the shear strength of solder joints was measured. The thickness of OSP increased with increase of the number of reflow pass by thermal degradation during the reflow process. It was also observed that the preservation effect of OSP decreased due to OSP degradation which led Cu pad oxidation. The mean shear strength of solder joints formed on the Cu pads finished with OSP and SnPb were 58.1 N and 62.2 N, respectively, through the pre-heating of 6 times. Although OSP was degraded with reflow process, the feasibility of its application was proven.

Effects of Graphene Oxide Addition on the Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Graphene Oxide 첨가에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 Electromigration 특성 분석)

  • Son, Kirak;Kim, Gahui;Ko, Yong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2019
  • In this study, the effects of graphene oxide (GO) addition on electromigration (EM) lifetime of Sn-3.0Ag-0.5Cu Pb-free solder joint between a ball grid array (BGA) package and printed circuit board (PCB) were investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of package side finished with electroplated Ni/Au, while $Cu_6Sn_5$ IMC was formed at the interface of OSP-treated PCB side. Mean time to failure of solder joint without GO solder joint under $130^{\circ}C$ with a current density of $1.0{\times}10^3A/cm^2$ was 189.9 hrs and that with GO was 367.1 hrs. EM open failure was occurred at the interface of PCB side with smaller pad diameter than that of package side due to Cu consumption by electrons flow. Meanwhile, we observed that the added GO was distributed at the interface between $Cu_6Sn_5$ IMC and solder. Therefore, we assumed that EM reliability of solder joint with GO was superior to that of without GO by suppressing the Cu diffusion at current crowding regions.