• Title/Summary/Keyword: Sn-3.0Ag

Search Result 279, Processing Time 0.036 seconds

Thermal Shock Cycles Optimization of Sn-3.0 Ag-0.5 Cu/OSP Solder Joint with Bonding Strength Variation for Electronic Components (Sn-3.0 Ag-0.5 Cu/OSP 무연솔더 접합계면의 접합강도 변화에 따른 전자부품 열충격 싸이클 최적화)

  • Hong, Won-Sik;Kim, Whee-Sung;Song, Byeong-Suk;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.152-159
    • /
    • 2007
  • When the electronics are tested with thermal shock for Pb-free solder joint reliability, there are temperature conditions with use environment but number of cycles for test don't clearly exist. To obtain the long term reliability data, electronic companies have spent the cost and times. Therefore this studies show the test method and number of thermal shock cycles for evaluating the solder joint reliability of electronic components and also research bonding strength variation with formation and growth of intermetallic compounds (IMC). SMD (surface mount device) 3216 chip resistor and 44 pin QFP (quad flat package) was utilized for experiments and each components were soldered with Sn-40Pb and Sn-3.0 Ag-0.5 Cu solder on the FR-4 PCB(printed circuit board) using by reflow soldering process. To reliability evaluation, thermal shock test was conducted between $-40^{\circ}C\;and\;+125^{\circ}C$ for 2,000 cycles, 10 minute dwell time, respectively. Also we analyzed the IMCs of solder joint using by SEM and EDX. To compare with bonding strength, resistor and QFP were tested shear strength and $45^{\circ}$ lead pull strength, respectively. From these results, optimized number of cycles was proposed with variation of bonding strength under thermal shock.

Characteristic of Intermetallic Compounds for Aging of Lead Free Solders Applied to 48 $\mu$BGA (48 $\mu$BGA에 적용한 무연솔더의 시효처리에 대한 금속간화합물의 특성)

  • Shin, Young-Eui;Lee, Suk;Fujimoto, Kozo;Kim, Jong-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 2001
  • The concerns of the toxicity and health hazard of lead in solders have demanded the research to find suitable lead-free solder alloys. It was discussed that effect of the intermetallic formation and structure on the reliability of solder joints. In this study, lead-free solder alloys with compositions of Sn/3.5Ag/0.75Cu, Sn/2.0Ag/0.5Cu/2.0Bi were applied to the 48 $\mu$BGA packages. Also, the lead-free solder alloys compared with eutectic Sn/37Pb solder using shear test under various aging temperature. Common $\mu$BGA with solder components was aged at $130^{\circ}C$, $150^{\circ}C$ and $170^{\circ}C$. And the each temperature applied to 300, 600 and 900 hours. The thickness of the intermetallics was measured for each condition and the activation energy for their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS (Energy Dispersive Spectroscopy). These results for reliability of lead-free interconnections are discussed.

  • PDF

Characteristics of SAC305 and Nano-Particle Dispersed Solders (SAC305 및 나노 입자 분산 솔더의 특성)

  • Kim, Jang Baeg;Seo, Seong Min;Kang, Hye Jun;Cho, Do Hoon;Rajendran, Sri Harini;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • Sn-3wt%Ag-0.5wt%Cu (SAC305) solder is most popular solder in electronics industry. However, SAC305 has also drawbacks such as growth of β-Sn phase, intermetallic compounds (IMCs) of Ag3Sn, Cu6Sn5 and Cu3Sn which can result in deterioration of solder joints in terms of metallurgically, mechanically and electrically. Thus, improvement of SAC305 solders have been investigated continuously by addition of alloying elements, nano-particles and etc. In this paper, recent improvements of SAC solders including nano-composite alloys and related solderabilty and metallurgical and mechanical properties are investigated.

Properties of Lead-free Solder Joints on Flexible Substrate for Automotive Electronics (자동차 전장을 위한 플렉시블 기판 무연 솔더 접합부 특성)

  • Ahn, Sungdo;Choi, Kyeonggon;Park, Dae Young;Jeong, Gyu-Won;Baek, Seungju;Ko, Yong-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.25-30
    • /
    • 2018
  • Sn-Pb solder has been used in automotive electronics for decades. However, recently, due to the environmental and health concerns, some international environmental organizations such as the end-of-life vehicle (ELV) enacted legislation banning of the Pb usage in automotive electronics. For this reason, many studies to develop and promote Pb-free soldering have been significantly reported. Meanwhile, because of flexibility and lightweight, flexible printed circuit boards (FPCBs) have been increasingly used in automotive electronics for lightweight to improve fuel efficiency and space utilization. Although the properties of lead-free solders for automotive electronics have been widely studied, there is a lack of research on the reliability performance of the lead-free solder joint on FPCB under user conditions. This study reported the properties of solder joints between Pb-free solders such as Sn3.0Ag0.5Cu, Sn0.7Cu and Sn0.5Cu0.01Al (Si), and various FPCBs finished with organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG). To evaluate on joint properties and reliabilities with different solder compositions and surface-finishing materials, pull strength test, thermal shock test, and bending cycle test were performed and analyzed. After the bending cycle test of solder joint on OSP-finishing, the fractures were occurred in solder and the lifetime of Sn3.0Ag0.5Cu solder joint was the longest.

Creep Properties of Sn-3.5Ag-xBi Solders (Sn-3.5Ag-Bi 솔더의 크리프 특성)

  • Shin, S. W.;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.25-33
    • /
    • 2001
  • Sn-3.5Ag-xBi alloys with five different levels of Bi (0, 2.5, 4.8, 7.5, 10 wt%) were prepared for evaluating creep properties. Cast alloys were roiled and heat treated to provide stable microstructures during the subsequent creep tests, which were conducted under constant load using dog-bone specimens. For the Bi containing alloys, creep strength showed the maximum around 2.5 wt%Bi and tended to decrease with increasing Bi content. The stress exponent of the alloy was around 4, suggesting typical dislocation creep, but the exponent was 2 for the 10 wt%Bi alloy, suggesting creep assisted by grain boundary Sliding. For the Bi containing alloys, the brittle fracture mode appeared showing small amount of reduction of area, while the ductile fracture mode was true for the Bi free alloy. Microstructural examination of ruptured specimens showed cavitations on grain boundaries normal to the load axis, and a significant of grain boundary sliding for the Bi containing alloys.

  • PDF

Effect of Different Aging Times on Sn-Ag-Cu Solder Alloy

  • Ervina Efzan, M.N.;Siti Norfarhani, I.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.112-116
    • /
    • 2015
  • This work studied the thickness and contact angle of solder joints between SAC 305 lead-free solder alloy and a Copper (Cu) substrate. Intermetallic compound (IMC) thickness and contact angle of 3Sn-Ag-0.5Cu (SAC 305) leadfree solder were measured using varying aging times, at a fixed temperature at 30℃. The thickness of IMC and contact angle depend on the aging time. IMC thickness increases as the aging increases. The contact angle gradually decreased from 39.49° to 27.59° as aging time increased from zero to 24 hours for big solder sample. Meanwhile, for small solder sample, the contact angle increased from 32.00° to 40.53° from zero to 24 hours. The IMC thickness sharply increased from 0.007 mm to 0.011 mm from zero to 24 hours aging time for big solder. In spite of that, for small solder the IMC thickness gradually increased from 0.009 mm to 0.017 mm. XRD analysis was used to confirm the intermetallic formation inside the sample. Cu6Sn5, Cu3Sn, Ni3Sn and Ni3Sn2 IMC layers were formed between the solder and the copper substrate. As the aging time increased, the strength of the solder joint mproved due to reduced contact angle.

The Creep Properties of Pb-free Sn-3.5Ag-$\chi$Cu Solder Alloys (Sn-3.5Ag-xCu무연 솔더의 크리프 성질 연구)

  • Joo, Dae-Kwon;Yu, Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.141-145
    • /
    • 2001
  • Sn-3.5Ag 무연 솔더에 Cu를 첨가한 3원계 합금을 만든 후 압연과 열처리한 후 크리프 특성을 연구하였다. 모든 솔더 합금에서 1차 크리프는 거의 관찰되지 않았으며, 2차와 3차 크리프가 대부분을 차지하였고, 최소 크리프 변형율은 Cu 함량이 0.75 wt %에서 최소이었고, 응력 지수는 약 4이었으며, 파단 시간 또한 0.75 wt% Cu에서 가장 길었다. 크리프 기구는 격자 확산에 의한 전위의 상승과 전위 활주에 의한 고온 크리프임을 앞 수 있었으며, Cu의 첨가는 1 wt% 가지 연성에 큰 영향을 주지 않았으나, 1.5 wt% 첨가했을 경우 연성은 크게 감소하였다.

  • PDF

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

Mechanical Characteristic Evaluation of Sn-Ag-Cu Lead Free Solder Ball Joint on The Pad Geometry (패드 구조에 따른 Sn-Ag-Cu계 무연 솔더볼 접합부의 기계적 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of PCB and BGA pad designs was investigated on the mechanical property of Pb-free solder joints. The mechanical property of solder joint was tested by three different test methods of drop impact tests, bending impact test, and high speed shear test. Two kinds of pad design such as NSMD (Non-Solder Mask Defined) and SMD (Solder Mask Defined) were applied with the OSP finished Pb-free solder (Sn-3.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu). in the drop impact test and bending impact test, the characterized lifetime showed the same tendency, and SMD design showed better mechanical property of solder joint than NSMD regardless of test method, which was due to the different crack path. The fracture crack on SMD pad was propagated along the intermetallic compound (IMC) layer of solder joint, while the fracture crack on NSMD pad propagated through upper edge of land which shields pattern. In the high speed shear test, pad lift occurred on the solder joint of NSMD. SMD/SMD combination of pad design consequently illustrated the best mechanical property of BGA/PCB solder joint, followed by SMD/NSMD, NSMD/SMD, and NSMD/NSMD.

The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation (금속-세라믹용 Pd-Ag-Sn-Au계 합금의 모의소성 시 산화처리 후 급랭에 의한 경화 효과)

  • Shin, Hye-Jeong;Kim, Min-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.197-206
    • /
    • 2017
  • The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation was investigated by means of hardness test, field emission scanning electron microscopic observations, and X-ray diffraction analysis. The hardness decreased by ice-quenching after oxidation, which was induced by the homogenization of the ice-quenched specimen. The decreased hardness by ice-quenching after oxidation was recovered from the wash stage which was the first stage of the remaining firing process for bonding porcelain. After wash stage, the hardness of the ice-quenched specimens decreased during the subsequent porcelain firing process. But the final hardness of the ice-quenched specimens after oxidation was higher than that of the specimens cooled at stage 0 after oxidation. The increase in hardness of the specimens during the first firing process was caused by the lattice strains generated at the interface between the face-centered cubic Pd-Ag-rich matrix and the face-centered tetragonal Pd3(Sn, Ga, In) precipitate. The decrease in hardness of the specimens during the remaining firing process was caused by the microstructural coarsening.