• Title/Summary/Keyword: Smoke-wire

Search Result 68, Processing Time 0.023 seconds

The Effect on Wake Flow and Vortex Shedding Frequency by Vortex Stabilizer in Karman Vortex Type Air Flow Sensor (칼만와류식 공기유량센서의 와안정판이 후류유동장과 와유출주파수에 미치는 영향)

  • 임성원;류병남;이종춘;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.846-856
    • /
    • 2001
  • An experimental study has been made to investigate the effect on wake flow and vortex shedding frequency by vortex stabilizer in Karman vortex type air flow sensor. The conditions investigated include 3 types of shapes and 3 types of separation distances of the vortex stabilizer. The phase averaged technique and smoke-wire flow visualization method are used to understand the detail information. The rolling up position of shear layer is fixed by the influence of the vortex stabilizer. Especially, the convex type vortex stabilizer has shown the more stable repeatability and linearity regarding the vortex shedding frequency compared to the other types.

  • PDF

An Experimental Study on Drag Reduction of Grooved Cylinders (Riblet 홈을 가진 원주의 저항감소에 관한 실험적 연구)

  • Im, Hui-Chang;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.260-268
    • /
    • 2001
  • Wake structures behind two circular cylinders with different groove configurations(U and V-shape) have been investigated experimentally. The results were compared with those for the smooth cylinder having the same diameter D. The drag force, mean velocity and turbulent intensity profiles of wake behind the cylinders were measured with varying the Reynolds number in the range of Re(sub)D=8,000∼14,000. As a result, the U-shaped groove was found to reduce the drag up to 18.6%, but the V-shaped groove reduced drag force only 2.5% compared with the smooth cylinder. As the Reynolds number increases, the vortex shedding frequency becomes a little larger than that of the smooth cylinder. The visualized flow using the smoke-wire and particle tracing methods shows the flow structure qualitatively.

Design and testing of a low subsonic wind tunnel gust generator

  • Lancelot, Paul M.G.J.;Sodja, Jurij;Werter, Noud P.M.;Breuker, Roeland De
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.125-144
    • /
    • 2017
  • This paper summarises the design of a gust generator and the comparison between high fidelity numerical results and experimental results. The gust generator has been designed for a low subsonic wind tunnel in order to perform gust response experiments on wings and assess load alleviation. Special attention has been given to the different design parameters that influence the shape of the gust velocity profile by means of CFD simulations. Design parameters include frequency of actuation, flow speed, maximum deflection, chord length and gust vane spacing. The numerical results are compared to experimental results obtained using a hot-wire anemometer and flow visualisation by means of a tuft and smoke. The first assessment of the performance of the gust generator showed proper operation of the gust generator across the entire range of interest.

System of gas sensor for conbinating wire and wireless using Internet of Things (IOT기술을 이용한 유무선 통합 가스검출 시스템 구현)

  • Bang, Yong-Ki;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • This study concerns the integrated gas sensor system of wire and wireless communication by using IoT(Internet of Things) technology. First, communication part is that it delivers the detection information, which transferred by wire or wireless communication and required control procedure based on a wireless module that receives the gas leakage information from wired or wireless detector, to administrator or user's terminal. Second, receiver part is that it shows the location and information, which received from the wired detector formed by a detecting sensor's node as linking with the communication part, and transfers these to the communication part. Third, wireless detector formed as a communication module of a detecting sensor node is that it detects gas leakage and transfers the information through wireless as a packet.Fourth, wired detector communicated with the receiver part and formed as a communication module of a detecting sensor node is that it detects gas leakage, transfers and shows the information as a packet. Fifth, administrator's terminal is that it receives gas leakage information by the communication part, transfers the signal by remote-control, and shut off a gas valve as responding the information. Sixth, database is that it is connected with the communication part; it sets and stores the default values for detecting smoke, CO., and temperature; it transfers this information to the communication part or sends a gas detecting signal to user's terminal. Seventh, user's terminal is that it receives each location's default value which stored and set at the database; it manages emergency situation as shutting off a gas valve through remote control by corresponding each location's gas leakage information, which transferred from the detector to the communication part by wireless.It is possible to process a high quality data regarding flammable or toxic gas by transferring the data, which measured by a sensor module of detector, to the communication part through wire and wireless. And, it allows a user to find the location by a smart phone where gas leaks. Eventually, it minimizes human life or property loss by having stability on gas leakage as well as corresponding each location's information quickly.

A Study on the Safety Estimation of Wiring Connection Connector Manufactured by Housing Type (하우징 형태(Housing Type)로 제작된 배선 연결 커넥터의 안전성 평가에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.462-466
    • /
    • 2010
  • The purpose of this study is to evaluate the safety of a wire connector fabricated for the effective installation of a lighting fixture including its contact resistance, insulation resistance, withstanding voltage characteristics, etc., and to provide the basis for the analysis and judgment of PL(Product Liability) dispute by presenting a damage pattern due to a general flame and overcurrent. This study applied the Korean Standard (KS) for the incombustibility test of the connector using a general flame and performed an overcurrent characteristics test of the connector using PCITS (Primary Current Injection Test System). The contact resistance of the housing connector was measured using a high resistance meter and the insulation resistance was measured using a multimeter. In addition, a supply voltage of AC 1,500V for testing the withstanding voltage characteristics was applied to both ends of the connector. Measurement was performed on 5 specimens and the measured values were used as a basis for judgment. Since the connector is fabricated in the form of a housing, it can be connected and separated easily and has a structure that allows no foreign material to enter. In addition, since it has a structure that allows wires to be connected only when their polarity is identical, any misconnection that may occur during installation can be prevented. When the incombustibility test was performed by applying a general flame to the connector, it showed outstanding incombustibility characteristics and the blade and blade holder connected to the housing remained firmly secured even after the insulation sheath (PVC) was completely destroyed by fire. In addition, the mechanism of the damaged connecting wire showed a comparatively uniform carbonization pattern and it was found that some residual melted insulation material was attached to both ends. In the accelerated life test (ALT) to which approximately 500% of the rated current was applied, the connector damage proceeded in the order of white smoke generation, wire separation, spark occurrence and carbonization. That is, it could be seen that the connector damaged by overcurrent lost its own metallic color with traces of discoloration and carbonization. The contact resistance of the connector at a normal state was 2.164mV/A on average. The contact resistance measured after the high temperature test was 3.258mV/A. In addition, the insulation resistance after the temperature test was completed was greater than $10G\Omega$ and the withstanding voltage test result showed that no insulation breakdown occurred to all specimens showing stable withstanding voltage and insulation resistance characteristics.

Flow and Heat Transfer Characteristics of a Multi-Tube Inserted Impinging Jet (노즐출구에 삽입된 다중관에 의한 충돌제트의 유동 및 열전달 특성)

  • Hwang, Sang-Dong;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.135-145
    • /
    • 2004
  • An experimental study is conducted to investigate the flow and heat transfer characteristics of a multi-tube inserted impinging jet. Four different multi-tube devices are tested for various nozzle-to-plate distance. Flow visualization by smoke-wire method and velocity measurements using a hot-wire anemometer are applied to analyze the flow characteristics of the multi-tube insert impinging jet. The local heat transfer coefficients of the multi-tube inserted impinging jet on the impingement surface are measured and the results are compared to those of the conventional jet. In multi-tube inserted system the multi-tube length plays an important role in the flow and heat transfer characteristics of the jet flow. With multi-tube insert of I3d4 and I6d4 which has relatively longer tube length than the multi-tube-exit of I3d1 and I6d1, the flow maintains its increased velocity far downstream due to interaction between adjacent flows. For the small H/D of 4, the local heat transfer coefficients of multi-tube inserted impinging jet are much higher than those of the conventional jet because the flow has higher velocity and turbulent intensity by the use of the multi-tube device. At large gap distance of H/D=12, also higher heat transfer rates are obtained by installing multi-tube insert except multi-tube insert of I3d1.

Control of Impinging Jet Heat Transfer Using Mesh Screens (메쉬 스크린을 이용한 충돌제트 열전달 제어에 관한 연구)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.722-730
    • /
    • 2001
  • The local heat transfer of an axisymmetric submerged air jet impinging on a heated flat plate is investigated experimentally with the variation of mesh-screen solidity. The screen installed in front of the nozzle exit modifies the flow structure and local heat transfer characteristics. The mean velocity and turbulence intensity profiles of streamwise velocity component are measured using a hot-wire anemometry. The temperature distribution on the heated flat surface is measured with thermocouples. The smoke-wire flow visualization technique was employed to understand the near-field flow structure qualitatively for different mesh screens. Large-scale toroidal vortices and high turbulence intensity enhance the heat transfer rate in the stagnation region. For a higher solidity, turbulence intensity become higher which increases the local heat transfer at small nozzle-to-plate spacings such as L/D<6. The local and average Nusselt numbers of impinging jet from the $\sigma$(sub)s=0.83 screen at L/D=2 are about 5.6∼7.5% and 7.1% larger than those for the case of no screen, respectively. For the nozzle-to-plate spacings larger than 6, however, the turbulence intensities for all tested screens approach to an asymptotic curve and the mean velocity along the jet centerline decreases monotonically. As the nozzle-to-plat spacing increases for high solidity screens, the heat transfer rate decreases due to the reduction in turbulence intensity and jet momentum.

Vortex pairing in an axisymmetric jet using fundamental and subharmonic forcing (기본교란 및 분수조화교란을 이용한 원형제트에서의 보텍스병합)

  • Jo, Seong-Gwon;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1350-1362
    • /
    • 1997
  • An experimental study has been performed on vortex pairing under fundamental and subharmonic forcing with controlled initial phase differences through hot-wire measurements and a multi-smoke wire flow visualization. For the range of St$_{D}$ < 0.6, vortex pairing was controlled by means of fundamental and subharmonic forcing with varying initial phase differences. Much larger mixing rate was achieved by two-frequency forcing with a proper phase difference than one frequency forcing. As St$_{D}$ decreased, vortex pairing was limited to a narrow region of the initial phase difference between two disturbances and higher amplitudes of the fundamental and its subharmonic at the nozzle exit were required for more stable pairing. As the amplitude of the subharmonic at the nozzle exit increased for fixed St$_{D}$ and fundamental amplitude, the distribution of the subharmonic mode against the variation of the initial phase difference changed from a sine function form into a cusp-like form. Thus, vortex pairing can be controlled more precisely for the former case. For St$_{D}$ > 0.6, non-pairing advection of vortices due to the improper phase difference was sometimes observed in several fundamental forcing amplitudes when only the fundamental was applied. However, when its subharmonic was added, vortex pairing readily occurred. As the initial amplitude of this subharmonic increased, the position of vortex pairing moved upstream. This was thought to be due to the fact that the variation of the initial phase difference between the fundamental and its subharmonic has less effects on vortex pairing in the region of fundamental-only vortex pairing.pairing.

Hypolipidemic Effect of Onion Peel Extract in Rats Exposed to Cigarette Smoke Extract with a High-Fat Diet (고지방식이를 섭취한 흡연 흰쥐모델에서 양파껍질 추출물의 혈액지질 대사 개선 효과)

  • Kim, Juyeon;Noh, Sang Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.161-166
    • /
    • 2016
  • This study was designed to investigate whether or not onion peel extract can lower blood lipid levels in rats exposed to cigarette smoke (CS) extract with a high-fat diet. Initially, male Sprague-Dawley rats were housed individually in a stainless steel, wire-bottomed cage with free access to AIN-93G diet. Rats were weight-matched and assigned to the following five groups: 1) control rats (CT) fed standard AIN-93G diet alone, 2) control rats exposed to CS extract (CT+CS), 3) high-fat group (HF) fed standard AIN-93 diet supplemented with 3% lard and 0.2% cholesterol, 4) high-fat group exposed to CS extract (HF+CS) fed standard AIN-93 diet supplemented with 3% lard and 0.2% cholesterol plus CS extract, and 5) high-fat plus onion peel (OP) extract group exposed to CS extract (HF+CS+OP) fed standard AIN-93 diet supplemented with 3% lard, 0.2% cholesterol, and onion peel extract (20 mg/17 g diet) plus CS extract. Using this feeding protocol, all animals completely consumed their respective diets throughout the 6 week duration. Blood was collected via the orbital sinus at weeks 0, 3, and 6, following overnight food deprivation. OP extract feeding resulted in significant reductions in blood triglyceride, total cholesterol, and non-HDL-cholesterol. Further, serum activities of aspartate transaminase and alanine transaminase were significantly reduced by OP extract at 6 weeks. These results provide clear evidence that onion peel extract has a profound inhibitory effect on blood lipids in rats exposed to CS extract. These findings suggest that OP extract can be used as an effective means in alleviating the serum lipid concentration after CS exposure.

Enhancement of Impinging Jet Heat Transfer Using Triangular Multi-Tabs (삼각형 멀티 탭을 이용한 충돌제트 열전달 향상 연구)

  • Lee Jeong-Wook;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1139-1146
    • /
    • 2004
  • The effect of triangular tabs attached at the perimeter of jet nozzle on heat transfer enhancement was investigated experimentally. The modified flow structure was visualized using a smoke-wire method. Four different types of jet nozzle having 0, 4, 6 and 8 tabs were tested at jet Reynolds number Re=15,000 to investigate the effect of tabs on the variation of heat transfer rate. The local and average Nusselt numbers are increased with increasing the number of tabs. At nozzle-to-plate distance of L/D=4, the average Nusselt number was increased about 9.9% at Re=15,000 in the impingement region for the case of 8 tabs attachment. As the nozzle-to-plate distance increases, however, the heat transfer enhancement effect of triangular tabs is reduced. For the case of 4 tabs, the heat transfer enhancement is not so distinctive at L/D=8. As the protrusion depth of tabs into the jet flow increases, the heat transfer rate is also enhanced when the nozzle-to-plate distance is smaller than L/D=6.