• Title/Summary/Keyword: Smoke control system

Search Result 234, Processing Time 0.026 seconds

A Study on the Pressure Difference of Smoke Control Influence Factor in the Super High-rise Building (초고층 건물의 제연영향요소에 따른 수직피난공간 압력분포 시뮬레이션)

  • Choi, Seung-Hyuck;Lee, Dong-Yun;Jun, Hyun-Do;Lee, Dong-Yun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.130-135
    • /
    • 2009
  • These days, the super high-rise buildings construction plans are increased in Korea. But the stack effect in the super high-rise building interrupts the smoke control system's operation because of pressure difference, so it is more dangerous than the general building when firing. Therefore it needs to study about the pressure difference in the super high-rise buildings. We research the smoke control influence factor in the super high-rise building. Reflecting the influence factor, the simulation is practiced the case by case.

  • PDF

The Development and Evaluation of Sidestream Smoke Collecting Apparatus Compatible for Linear Smoking Machine (다채널 선형자동흡연장치 부착형 부류연 포집장치의 개발과 평가)

  • Kim Hyo-Keum;Hwang Keon- Jung;Ji Sang-Un;Lee John-Tae;Rhee Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.120-126
    • /
    • 2005
  • The Fishtail Chimney system mounted on 1 channel smoking machine is not appropriate for the routine analysis of sidestream smoke, because of its low repeatability and very long time required for smoke collection. To overcome this inconvenience, we developed a new sidestream smoke collecting apparatus compatible for 8 channel linear smoking machine. An electric motor driven stroke and automatic control system were adopted in this device to maximize convenience and efficiency of its operation. Also, we carried out the international collaborative study on monitoring sidestream smoke analysis to test the performance of this system. From the statistical analysis of the data obtained in our laboratory and other participating labs, it has been indicated that the newly developed sidestream smoke collection apparatus could be applicable to the routine analysis of sidestream smoke.

Study of the Smoke Extraction Efficiency Improvement by the Partial Smoke Extraction System in Tunnel Fire (터널화재시 부분배연설비에 의한 배연효율 향상에 관한 연구)

  • Yoo, Yong-ho;Lee, Eui-ju;Shin, Hyun-jun;Shin, Han-cho|;Yoon, Young-hoon;Kim, Chang-whan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.53-63
    • /
    • 2006
  • The objective of this study is to analyze the smoke movement and the smoke extraction efficiency using by the partial extraction system for case of tunnel fire. Based on Froude modeling and isothermal model, the 1/20 scaled model tunnel (12m long) was constructed. In the case of the upper critical velocity in the main tunnel, the smoke extraction efficiency shows almost same between group damper and distributed damper. Finally, if the fire occurs on a traffic Jam in a tunnel, it is proposed that the open dampers in partial gallery extract smoke from the main tunnel without jet fan operation. Then, after the passengers have escaped the tunnel, the jet fans work on. On the other hand, If the traffic is uncongested in the tunnel, the jet fans (smoke control system) and partial extraction system (smoke exhaust system) are operated at once in tunnel fire.

  • PDF

A Study for a Effectiveness of Smoke Control Operation Mode for a Subway with Separate Platform (지하철 상대식 승강장의 제연운전모드 실효성에 관한 연구)

  • Rie Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.24-29
    • /
    • 2005
  • This study aim to derive the operation method of a comprehensive ventilation system which is capable of providing passengers with safe exit paths from platforms in onboard The situations. The airflow distributions in subway platforms under 13 types of tunnel vent system for a double track stop condition was calculated and having analyzed diffusion behaviors of smoke and heat exhaust in such states by performing 13 kinds of different ventilation scenarios by using a 3-D Fire Dynamic Simulation (FDS) simulation model to clarify the safety evaluation for the heat and smoke exhaust on subway fire events.

The Ventilation Plane Due to Smoke Driving Combined Forces in Super High-Rise Buildings (초고층 건물에서 연기이동 복합력에 의한 환기계획)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.82-87
    • /
    • 2016
  • The ventilation system for the efficient operation of the building services systems in the ventilation plan of super high-rise buildings is used to combine smoke control systems. This study evaluated models of super high-rise buildings with four basement levels and 59 stories and investigated the pressure distribution of each floor by the smoke driving forces by numerical analysis. The smoke driving forces on the building of analytical model was analyzed to determine the effects of the ventilation plan and smoke control plane. In addition, when a combination with ventilation and smoke control of the kitchen ventilation damper in the ventilation plan of analysis model building was designed based on the these results, the relationship between the opening and closing force of the damper and smoke driving combined forces to act on the design pressure of the damper by a motion analysis simulation. The driving units of the damper were selected from the analytical results.

Numerical Simulation on Smoke Movement in Multi-Compartment Enclosure Fires under Pressurized Air Supply Conditions (급기가압 조건에서 복합 구획 공간 화재의 연기 거동에 대한 수치해석 연구)

  • Ko, Gwon Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.15-21
    • /
    • 2018
  • This study examined the flow characteristics of fire smoke under pressurized air ventilation conditions by carrying out fire simulations on multi-compartment enclosure, including room, ancillary room and stair case. Fire simulations were conducted for the air-leakage test facility, which was constructed to measure the effective leakage area and aimed to improve the understandings of fire and smoke movement by analyzing the overall behaviors of fire smoke flow and pressure distributions of each compartment. The simulation results showed that the heat release rate of the fires was controlled sensitively by the amount of air supplied by the ventilation system. An analysis of the velocity distributions between the room and ancillary room showed that fire smoke could be leaked to the ancillary room through the upper layer of the door, even under pressurized air supply conditions. From these results, it was confirmed that the fire size and spatial characteristics should be considered for the design and application of a smoke control system by a pressurized air supply.

A NUMERICAL STUDY ON THE FIRE EMERGENCY IN THE UNDERGROUND STATION WITH TRACKWAY EXHAUST SYSTEM (TES) (선로부 TES를 갖는 지하철 역사내 화재의 수치 해석)

  • Park, Jong-Tack;Won, Chan-Shik;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.26-31
    • /
    • 2006
  • In the present study, a numerical simulation of the subway carriage fire is performed to determine the more effective operation of Trackway Exhaust System(TES) in underground stations. The four types of possible TES operation (OSUS, OSUE, OEUS and OEUE) is simulated and compared their removal capability of smoke and hot temperature for the carriage fire of 2MW. From the results, the distribution of temperature and smoke concentration is more dependent on the operation of fans located at upper side of the platform than those at lower side. It is also found from the results that for more efficient smoke control, the fans at upper side of the platform should be operated as an exhaust system. Whereas the fans at lower side can be operated as a supply system to aid upper exhaust fans.

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screen Doors are Installed (I) - Analysis on Smoke Control Performance on the Platform (스크린도어가 설치된 대심도 지하역사의 제연 실험 I - 승강장에서의 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin;Kwon, Tae-Soon;Lee, Duck-Hee
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.485-496
    • /
    • 2018
  • In this paper, the smoke behavior in an underground station on operation of the fans in the ventiliation of the station was measured by the experimental method when the fire occurred in the underground station platform where the platfrom screen door was installed. The ventilation characteristics were compared when the ventilation system was operated and when the ventilation system was not operated when a fire occurred at the platform where the clean door was closed. To simulate the fire smoke, the smoke generated from the smoke generator was heated using a hot air fan. The transmittance was measured using a smoke density meter to quantitatively measure fire smoke. If the screen door is closed and the ventilation system of the underground station does not work, it is confirmed that if a fire occurs in the platform, smoke accumulates inside the platform, evacuating passengers is very difficult and can lead to a very dangerous situation. On the other hand, under the condition that the ventilation facility of the subway station is operated, the smoke evacuates to the outside through the ventilation facility of the underground station, and airflow is formed in the direction from the waiting room to the waiting area, so that the passenger located on the platform can safely evacuate toward the concourse. In the following paper, we will discuss the concurrent effect of tunnel ventilation through tunnel vent near the platform.

Numerical Analysis of Smoke Control for high-rise Building Considering with the Enthalpy Equation (Enthalpy Equation을 이용한 고층 건물의 제연해석)

  • Bae, Sung-Ryong;Ro, Kyoung-Chul;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.27-32
    • /
    • 2010
  • Recently, increases of population density due to the industrialization in the metropolitan cities has caused the high-density and integration of life environment. Then various high-rise buildings are constructed for accommodation. However, high-rise building fires can cause high casualties due to increases of smoke spread velocity through the vertical shaft. In this study, the new program based on the enthalpy conservation for analysis of energy transfer for smoke control system, CAU_ESCAP, was developed. CAU_ESCAP was validated by comparing with the result of ASCOS. The characteristic of smoke control was analysed by using CAU_ESCAP for high-rise building fires.

The Influence on the Stack effect that Pressure differential system to smoke control in High-rise buildings (초고층 건축물에서 급기가압제연이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.235-238
    • /
    • 2008
  • High-rise buildings with stack effect caused by the foreclosure, which significantly delayed the spread of a fire in effects of these stack effect driving force said. In this research on the stack effect of the lobby if the pressurization of the stairwell analysis of the pressure distribution of the CONTAMW. Overall, the pressurization of the lobby makes it stairwell amount of pressure(+) to the zone in pressure designed to prevent the spread of smoke control performance and found that, the way a normal state and sub-pressurization in the stairwell with stack effect of the turbulence Such as the formation of the upper flow, but, in the upper atmosphere with pressurization was formed by the underlying trend.

  • PDF