• 제목/요약/키워드: Smoke control system

Search Result 234, Processing Time 0.03 seconds

Fire Detection Performance Experiment of the Water Jet Nozzle Position Control Type Automatic Fire Extinguishing Facility for Road Tunnels (도로터널용 방수노즐 위치제어형 자동소화설비의 화재감지성능실험)

  • Kim, Chang-Yong;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.85-91
    • /
    • 2019
  • This study evaluated the fire detection performance of an automatic fire extinguishing system for road tunnels, which combines flame wavelength detection technology with flame image detection technology. This fusion technique to improve the fire detection capability can reduce the damage caused by the fire suppression by locating the fire source in the fire and discharging the pressurized water only at the fire source. Experiments were conducted to determine the position of a fire source when a $70cm{\times}70cm$ target was placed at a distance of 15 m, 20 m, 25 m, 30 m, and 35 m, respectively, in a situation where there is a flame and smoke in a tunnel. The performance of the ultraviolet and triple wavelength infrared (IR3) sensors was attenuated due to the interference of thick smoke. In addition when the flame was blocked by thick smoke, the image sensor sensed the smoke and emitted a fire signal.

A Study on the Effect of Inflammable Materials on the Control Characteristics of Thermal and Smoke Fluid of Water Curtain System (가연성 물질에 따른 워터커튼 시스템의 열 및 연기유동 제어특성에 관한 연구)

  • You, Woo-Jun;Nam, Jun-Seok;Kim, Dong-Joon;Lee, Jeong-Kyoon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.53-58
    • /
    • 2012
  • In this study fire control characteristics for inflammable materials of water curtain system are experimentally analyzed. Heat release rate for pinewood and gasoline was calculated using Room Corner Tester (RCT) and fire test apparatus for water curtain system is manufactured. Nozzles (180 degree of injection angle, 8.2 mm of orifice diameter) are installed at the nearby ceiling of place at 5 m distance from fire originate and temperature profile as well as transmission are obtained from the fire experiment of pinewood and gasoline in the water curtain system. Based on the results, parameters of engineering importance for fire control characteristics of water curtain system such as generation of high temperature smoke and thermal phenomena of fluid flow by injection nozzle are identified.

Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Cross Draft Directions and Velocities Using Smoke Visualization Technique (기류 가시화기법을 이용한 방해기류 방향과 속도에 따른 푸쉬풀 후드 효율 평가)

  • Song, Se-Wook;Kim, Tae-Hyeung;Ha, Hyun-Chul;Kang, Ho-Gyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank in recent years. Efficiency of push pull hood system is affected by various parameters, such as cross draft, vessel shapes, size of tanks surface, liquid temperature, and so on. Among these, velocity of cross draft might be one of the most influencing factor for determining the ventilation efficiency. To take account of the effect of cross draft velocities over 0.38m/s, a flow adjustment of ${\pm}$20% should be considered into the push and +20% into the pull flow system Although there are many studies about the efficiency evaluation of push pull hood system based on CFDs(Computational Fluid Dynamics) and experiments, there have been no reports regarding the influence of velocities and direction of cross-draft on push-pull hood efficiency. This study was conducted to investigate the influence of cross draft direction and velocities on the capture efficiency of the push-pull ventilation system. Smoke visualization method was used along with mock-up of push-pull hood systems to verify the ventilation efficiency by experiments. When the cross-draft blew from the same origins of the push flows, the efficiency of the system was in it's high value, but it was decreased significantly when the cross-draft came from the opposite side of push flows Moreover, the efficiency of the system dramatically decreased when the cross-draft of open surface tank was faster than 0.4m/s.

A study on the calculation method for the number of vehicles in queue to determine the fire ventilation capacity in road tunnels - forced on the effect of queue length (도로터널의 제연용량 산정을 위한 정체차량대수 산정기법에 관한 연구 - 정체길이를 중심으로)

  • Yoo, Yong-Ho;Kim, Hyo-Gyu;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.41-52
    • /
    • 2016
  • When the queue length of congestion vehicles in tunnel fire is extended beyond tunnel length, the capacity of smoke control system needs to be increased in line with ventilation resistance. However, the vehicle queue length is not defined, so a rational equation is necessary in current fire prevention guideline. This study is intended to propose an equation to calculate the queue length considering the number of vehicles in queue in tunnel fire and evaluate the applicability by tunnel length as well. When it comes to normal tunnel, it is necessary to compare the vehicle queue length with tunnel length up to the length of 1,200 m in a bid to avoid applying the vehicle queue length excessively in case of fire. As a result of evaluation of applicability to model a tunnel, saving the number of jet fan for smoke control appeared to be effective. Besides, quantitative approach to explain the vehicle queue length through the relationship between the percentage of large vehicles and tunnel length was presented. Consequently, when the queue length of the congestion vehicles exceeds the tunnel length in determining the capacity of smoke control system in case of fire, the number of vehicles beyond the tunnel length needs to be excluded from estimating the ventilation resistance by vehicles.

Research on the Reliability Improvement of Automatic Fire Alarm System (자동화재탐지설비의 신뢰성 개선에 관한 연구)

  • Son, Young-Jin;Lee, Young-Il;Lee, Sang-Hyeon
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.42-49
    • /
    • 2008
  • This research is to provide a scheme for an automatic fire alarm system with higher reliability through solving problems of malfunctioning (false or missing fire alarm) and power interruption (result from frequently unwanted activation, etc) of an automatic fire alarm system. A digital control system with microprocessor-based is proposed to reduce the possibility of malfunctioning through a combinational use of heat, smoke and CO sensors. Higher reliability could be achieved by these multiple sensors based fire detection system and fire distinction algorithm. In this research, we implemented actual fire detection system and conducted fire test to verify improvement on reliability.

Retraction: A numerical study on the fire smoke behavior by operating the fire prevention system in tunnel-type structure (논문 취소: 터널형 구조물의 방재시설 가동에 따른 화재연기 거동에 관한 수치 해석적 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Lee, Sang-Don;Heo, Won-Ho;Jo, Jong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.189-199
    • /
    • 2019
  • In this study, behaviors of fire smoke in the operation of disaster prevention facilities (smoke damper, jet fan) in a tunnel-type structure (soundproof tunnel) were investigated numerically and results of the investigation were compared and analyzed. Through the simulation and analysis, it was found that there was a significant change in the patterns of fire smoke between the opening of the ceiling of a fire vehicle and the closing, and it was shown that the critical temperatures of PC and PMMA, main materials of a soundproof tunnel were not exceeded. In addition, the simulation of installation intervals of smoke dampers showed that the maximum temperature of a soundproof tunnel without smoke dampers was $552^{\circ}C$ while it reached $405^{\circ}C$ when smoke dampers were installed at the installation interval of 50 m. The simulation of the operation of a jet fan showed that the maximum temperature of a soundproof tunnel without a jet fan was $549^{\circ}C$ while it reached only $86^{\circ}C$ when a jet fan was operating. Therefore, it is highly expected that they could create a favorable environment for evacuation and protection of soundproofing materials, and it would be necessary to promote basic studies on tunnels serving various functions and purposes.

A Study on Improvenment of Livingroom Smoke-control System using the FDS (화재 시뮬레이션(FDS)을 이용한 거실제연설비 개선에 관한 연구)

  • Kim, Mi-Seon;Baek, Eun-Seon
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.26-34
    • /
    • 2017
  • The purpose of this study is to identify and improve the performance of the adjacent room ventilation system in living room ventilation facilities, and compare and analyze the smoke control regulations of the NFPA code and the national fire safety standard (NFSC). The analysis method was fire dynamics simulation (FDS) and was used to analyze the, variations of the air supply amount, width of the boundary, change in indoor combustion and wind velocity of the incoming air. It was found to be advantageous to secure the clean layer when the amount of air supplied is less than the amount of discharged air in the fire room. However, in the supply room, it is more effective to secure the clean layer when the amount of supplied air is larger than the amount of discharged air, as a longer boundary width gives rise to better performance. In addition, it is necessary to consider the amount of air supplied and discharged as a function of the kind of flammable material. Moreover, decreasing the air inlet wind speed and amount of incoming air is advantageous for securing the clean layer of the fire room.