최근, 인공신경망 모델은 예측, 수치제어, 로봇제어, 패턴인식 등의 분야에서 촉망되는 기술이다. 본 연구에서는 인공신경망 모델을 이용하여 온실 외부 온도를 예측하고 이를 온실제어에 활용하는데 목적이 있다. 예측 모델의 성능 평가를 위해 다중회귀모델과 SVM 모델과의 비교분석을 수행하였다. 평가 방법으로는 10-Fold Cross Validation을 사용하였으며, 예측 성능 향상을 위해 상관관계분석 통해 데이터 축소를 수행하였고, 측정 데이터로부터 새로운 Factor 추출하여 데이터의 신뢰성을 확보하였다. 인공신경망 구축을 위해 Backpropagation algorithm을 사용하였으며, 다중회귀모델은 M5 method로 구축하였고, SVM 모델을 epsilon-SVM으로 구축하였다. 각 모델의 비교분석 결과 각각 0.9256, 1.8503과 7.5521로 나타났다. 또한 예측모델을 온실 난방부하 계산에 적용함으로써 온실에 사용되는 에너지 비용 절감을 통한 수입증대에 기여할 수 있다. 실험한 온실의 난방부하는 3326.4kcal/h이며, 총 난방시간이 $10000^{\circ}C/h$일 때 연료소비량은 453.8L로 예측된다. 아울러 데이터 마이닝 기술 중 하나인 인공신경망을 정밀온실제어, 재배기법, 수확예측 등 다양한 농업 분야에 적용함으로써 스마트 농업으로의 발전에 기여할 수 있다.
Glycerol is a non-volatile compound with no aromatic properties that contributes significantly to the quality of wine by providing sweetness and richness of taste. In addition, it is also the third most significant byproduct of alcoholic fermentation in terms of quantity after ethanol and carbon dioxide. In this study, Fourier transform infrared (FT-IR) spectroscopy was employed as a fast non-destructive method in conjugation with multivariate regression analysis to build a model for the quantitative analysis of glycerol concentration in wine samples. The samples were prepared by using three varieties of red wine samples (i.e., Shiraz, Merlot, and Barbaresco) that were adulterated with glycerol in concentration ranges from 0.1 to 15% (v·v-1), and subjected to analysis together with pure wine samples. A net analyte signal (NAS)-based methodology, called hybrid linear analysis in the literature (HLA/GO), was applied for predicting glycerol concentrations in the collected FT-IR spectral data. Calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results exhibited a high coefficient of determination (R2) of 0.987 and a low root mean square error (RMSE) of 0.563% for the calibration set, and a R2 of 0.984 and a RMSE of 0.626% for the validation set. Further, the model was validated in terms of sensitivity, selectivity, and limits of detection and quantification, and the results confirmed that this model can be used in most applications, as well as for quality assurance.
Supply electrical conductivity (EC) concentration of the nutrition solution is an important factor in the absorption of nutrients by plants and the management of the root zone, as it can control the vegetative/reproductive growth of a plant. Paprika usually undergoes its reproductive and vegetative growth simultaneously. Therefore, ensuring proper growth of the plant leads to increased yield of paprika. In this study, growth characteristics of paprika were examined according to the EC concentration of a coir and a rockwool substrate. The supply EC was 1.0, 2.0, and 4.0 mS·cm-1 applied at the initial stages of the growth using the rockwool (commonly used by paprika farmers) and the coir substrate with a chip and dust ratio of 50:50 and 70:30. For up to 16 weeks of paprika growth, EC concentrations of 1.0 and 2.0 mS·cm-1 were found to have a greater effect on the growth than EC at 4.0 mS·cm-1. The normality (marketable) rate of fruit, the soluble solid content, and paprika growth showed that the coir was generally better than the rockwool regardless of the supply EC concentration. The values of the yield per plant at an EC concentration of 4.0 mS·cm-1 was mostly similar at 1.6 kg (coir 50:50), 1.5 kg (coir 70:30) and 1.5 kg (rockwool), but the yield of the rockwool was 88%, which was lower than 98% and 94% yield of the coir substrate. Therefore, this concludes that coir substrate is more effective than rockwool at improving paprika productivity. The results also suggest that the use of coir substrate for paprika has many benefits in terms of reducing production costs and preventing environmental destruction during post-processing.
저가형 UAV기반 사진측량의 정밀도와 정확도를 평가하기 위한 실험을 수행하였다. 높은 정확도의 지상기준점과 검사점의 3차원 좌표를 추정하고자 GNSS정지관측과 기선해석, 망조정을 수행하였고, 신뢰수준 95%에 대하여 정확도가 1cm 이내인 좌표를 확보하였다. 실험 대상지에 대한 항공 사진은 DJI Phantom 4와 이에 탑재된 FC330 카메라로 7회 반복 촬영하였고, 이를 두 가지 소프트웨어로 처리하였다. 10개 검사점에 대한 소프트웨어 자동 추출좌표와 GNSS 추정해를 비교하여 표준편차 및 RMSE를 분석하였다. 두 소프트웨어 처리 결과, 95% 신뢰수준에 대해 표준편차는 남북, 동서, 높이 방향 각각 약 1cm, 2cm, 4cm 이내, RMSE는 수평과 높이 각각 9cm, 8cm 이내였으며, 표준편차가 RMSE에 비해 현저히 작았다. 두 소프트웨어 처리 결과의 통계적 차이를 확인하고자 F-ratio 검정을 수행하였다. 정밀도에 대해서는 모든 좌표 성분에 대해 한쪽꼬리 검정의 귀무가설이 기각되었고, RMSE에 대해서는 수평에 대한 것만 기각되었다. 이에 따라, 동일한 사진 자료를 처리하더라도 소프트웨어에 따라 그 결과에 통계적 차이가 있을 수 있음에 유의할 필요가 있다.
가뭄은 자연적 현상이지만, 지역의 물리적 및 사회적 요소와 결합되어 피해가 발생한다. 특히, 각종 용수 공급 및 수요과 연관되어 사회 경제적으로 큰 피해를 야기시킨다. 비슷한 심도의 기상학적 가뭄에도 지역의 특성과 용수공급체계에 따라 실제로 발생하는 가뭄 피해는 다르다. 본 연구에서는 지역의 사회·경제적 인자와 용수공급체계를 고려하여 가뭄 위험도를 평가하였다. 노출성은 용수공급 과부족량을 나타내는 결합가뭄관리지수(JDMI)를 등급화하여 평가하였다. 취약성은 가뭄에 영향을 받는 10개의 사회·경제적 인자에 엔트로피, PCA 및 GMM를 적용하여 가중평균하여 평가하였다. 대응능력은 지역의 용수능력을 나타내는 인자들을 베이지안 네트워크에 적용하여 평가하였다. 위험도는 노출성, 취약성 및 대응능력을 통합하여 결정하였다. 용수공급 실패 사상의 발생 가능성을 의미하는 가뭄 노출성을 평가한 결과, 괴산군이 0.81로 가장 높게 나타났다. 가뭄 취약성의 경우, 대전광역시가 0.61로 매우 취약한 것으로 나타났다. 지역의 용수공급체계가 고려된 가뭄 대응능력을 평가한 결과, 세종시가 가뭄 대응능력이 가장 낮은 것으로 나타났다. 마지막으로 위험도를 평가한 결과, 청주시가 가장 높게 나타났다. 이러한 결과를 통해 가뭄에 대한 위험 및 취약 원인을 파악하였으며, 향후 지역의 특성을 고려한 가뭄 피해 저감 정책 마련이 가능하다.
Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
Smart Structures and Systems
/
제30권5호
/
pp.521-535
/
2022
Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.
Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.30-40
/
2024
Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.
딸기 '설향' 품종에 대해 삽목 육묘의 조건을 확립하고자 삽수 채취용 모주 선택, 삽수의 적정 엽수 및 삽목 시기를 구명하였다. 삽수 채취는 육묘장 모주와 과실 수확 후 재배 식물체에서 채취하였고, 삽수의 엽수는 0, 1, 2장 그리고 삽목 시기는 6월 4일부터 7월 9일까지 1주일 간격으로 하였다. 육묘장 삽수와 재배 식물체 삽수의 최종 생존율은 각각99.5%, 98.7%로 높았으며, 유의적인 차이는 없었다. 근수는 육묘장 삽수에서 3.1개 많았고, 관부와 잎의 생육은 차이가 없었다. 과실 수량은 육묘장 삽수와 재배 식물체 삽수에서각각419.2g, 428.4g이었지만 유의적인 차이는 없었다. 삽수의 엽수별 생존율은 엽수 1, 2장에서 각각98.1%, 98.3%로 높았고, 0장은 25.3%로 현저히 낮았다. 근수는 엽수 1, 2장에서 각각26.0개, 26.3개로 엽수 0장의 23.5개에 비해 많았다. 관부와 엽의 생육에서는 엽수에 따른 유의적인 차이가 없었다. 과실 수량은 엽수 1, 2장에서 각각424.4g, 421.5g으로, 0장 396.7g 보다 많았다. 삽목 시기에 따른 삽목 후 생존율은 97.2% 이상으로 높았으며, 처리 간의 유의적인 차이는 없었다. 묘의 지하부와 지상부 그리고 관부의 생육은 6월 4일과 11일 삽목에서 가장 좋았다. 과실 수량은 6월 4일, 6월 11일 삽목에서 각각433.3g, 426.4g으로 가장 많았으며, 삽목 시기가 가장 늦었던7월 9일 삽목에서는 384.5g으로 적었다. 딸기 삽목용 삽수 재료는 육묘장 삽수와 과실 수확을 마친 재배 식물체 삽수 모두 가능하였고, 삽수의 적정 엽수는 최소 1장 이상 그리고 경남 지역의 삽목 시기는 6월 4일-11일이 적합하였다.
이 연구의 목적은 Mtwo 전동 파일의 사용에 있어서 제조사가 제안한 single length technique과 crown-down technique의 근관성형효율과 안전성을 비교하고 Mtwo 전동 파일의 변형된 사용방법을 제안하고자 하는 것이다. 기구의 종류와 사용방법에 따라 60개의 레진 블록 근관 모형 (Endo Training Bloc; Benstply Maillefer, Ballaigues, Switzerland)을 세 군으로 나누어 20개씩 표본을 성형하였다. MT군은 Mtwo 파일 (VDW, Munich, Germany)을 제조사의 추천방법인 single length technique으로, MC군은 Mtwo 파일을 crown-down technique으로 형성하였고, 대조군인 PT군은 ProTaper (Denstply Maillefer, Ballaigues, Switzerland)를 사용하였다. 모든 기구는 250 r.p.m., torque 2.2 N로 고정한 전동 모터 (X-smart; Denstply Maillefer, Ballaigues, Switzerland)로 사용하였다. 근관 성형 후, 스캐너로 근관 형성 전후의 이미지를 채득하여 중첩 비교함으로써 근단부로부터 1, 2, 3, 4, 5, 6, 7, 8 mm 높이에서의 중심변위율을 산출하였다. 순수 기구조작 시간 및 기구조작 동안의 binding빈도를 기록하였다. 근관 성형 후, 레진 블록의 무게 감소를 측정하였고 근관 성형에 사용된 파일의 파절이나 변형 및 근관 성형 후 형태의 이상을 조사하였다. 세 실험군의 측정 및 산출된 자료를 일원배치 분산분석 및 Duncan's Multiple Range Test로 사후 검정을 시행하여 비교하였으며, Fisher's exact test으로 근관의 이형성, 기구의 변형 그리고 기구 binding 등 발생 빈도를 유의 확률 95%에서 통계 검정하였다. 그 결과는 다음과 같다. 1. 근관의 만곡도 감소, 중심변위율, 레진 블록의 무게 감소, 기구 변형 등은 세 군간에 유의한 차이가 없었다 (p > 0.05). 2. 기구 조작 시간은 보면 MT군과 MC군이 PT군보다 짧았다 (p < 0.05). 3. Elbow는 MT군이 MC군에서 PT군보다 더 많이 형성되었다 (p < 0.05). Ledge는 세 군 모두에서 나타나지 않았다. 4. 파일 binding 횟수는 MC군이 가장 적고 PT군이 가장 많았다 (p < 0.05). 이상의 결과를 볼 때, Mtwo 전동 파일을 crown-down technique으로 사용하는 것이 single length technique과 유사한 성형 효율을 보이면서도 더 안전할 것으로 추정된다.
B2B 시장에서 구매자와 판매자간의 관계는 매우 밀접하고 장기화되는 것이 특징이므로 결국 단순한 제품을 판매하는 것에 그치는 것이 아닌 지속적인 서비스에 대한 중요성이 날로 커지고 있다. 산업재 연구 전반에 걸쳐서도 서비스에 대한 중요성과 관심이 증대되면서 고객이 서비스를 사용하는데 있어서 그 서비스의 품질과 함께 최근 소비자들은 얼마나 빠르고 쉽게 서비스가 제공되어 투입되는 노력을 최소화시킬 수 있는가를 매우 중요하게 생각하기 때문에 편의성이 중요한 요인으로 고려되어지고 있다. 이에 따라, 본 연구에서는 산업재 시장에서 관계만족과 관계성과를 형성하는데 중요하게 생각할 수 있는 새로운 요인이 어떤 것인가 라는 의문점에서 출발하여, 서비스 편의성과 관계성과 사이의 구조적 관계를 조사하고자 하였다. 이 연구의 가장 큰 학문적 기여점은 산업재 연구에서 주류를 이루고 있는 관계품질과 관계성과의 새로운 선행요인을 검증한 것이다. 또한 소비재 시장에서 주로 연구되었던 서비스 편의성 척도를 산업재 시장에 적용하여 그 활용도를 실험해 보았다는 데 의의가 있다. 본 연구는 서비스 편의성의 구성요소인 서비스 편의성을 결정편의성, 접근편의성, 거래편의 성, 편익편의성, 사후편익편의성 다섯가지 차원으로 구분하고 관계적 요인인 관계만족에 미치는 영향과 이러한 관계만족이 관계몰입과 관계성과에 어떠한 영향을 미치는가를 분석하여 서비스 편의성의 관리와 투자에 대한 마케팅 측면의 중요성을 제시하고 있다. 실증분석을 위해 산업재 서비스를 이용하고 있는 기업의 직원들을 대상으로 설문을 통해 데이터를 수집하였으며 서비스 편의성 ${\rightarrow}$ 관계만족 ${\rightarrow}$ 관계몰입 $\{rightarrow}$ 관계성과에 대한 인과적 구성모텔에 대해 구조방정식 모델분석으로 검증하였다. 구성모텔에 대한 분석결과 서비스 편의성을 구성하는 요소 중 접근편의성을 제외한 나머지 결정편의성, 거래편의성, 편익편의성, 사후편익편의성은 모두 관계적 요인들에 긍정적인 영향을 미쳤으며, 그 중 편익편의성이 관계적 요인에 가장 큰 영향을 주는 것으로 나타났다. 또한 추가적으로 매개효과검증을 실시하여, 서비스 편의성과 관계성과의 관계를 살펴보는데 있어서, 서비스 편의성이 관계만족과 관계몰입을 통해서 관계성과에 긍정적인 영향을 주는 구조적 인 관계를 가지고 있음을 알 수 있었다. 이는 높은 서비스 편의성에 대한 관리와 투자가 구매자로 하여금 관계에 만족하게 만들고 이렇게 형성된 관계만족은 관계에 몰입하게 하여 결과적으로는 관계성과를 가져올 수 있음을 시사한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.