• Title/Summary/Keyword: Smart robot

Search Result 387, Processing Time 0.028 seconds

Construction of a Sensor Network-based Smart Environment for Service Robots (서비스 로봇을 위한 센서 네트워크 기반 스마트 환경 구축)

  • Baeg, Seung-Ho;Park, Jae-Han;Koh, Jae-Han;Baeg, Moon-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.334-340
    • /
    • 2007
  • This paper introduces a prototype smart home environment that is built in the research building to demonstrate the feasibility of a robot-assisted future home environment. Localization, navigation, object recognition and handling are core functionalities that an intelligent service robot should provide. A huge amount of research effort has been made to make the service robot perform these functions with its own sensors, actuators and a knowledge base. With all complicated configuration of sensors, actuators and a database, the robot could only perform the given tasks in a predefined environment or show the limited capabilities in a natural environment. We started a smart home environment for service robots for simple service robots to provide reliable services by communicating with the environment through the wireless sensor networks. In this paper, we introduce various types of smart devices that are developed for assisting the robot in the environment by providing sensor and actuator capabilities. In addition, we present how the devices are integrated to constitute the smart home environment for service robots.

  • PDF

Mobile Robot Control using Smart Phone for internet of Things (사물인터넷 구축을 위한 스마트폰을 이용한 이동로봇의 제어)

  • Yu, Je-Hun;Ahn, Seong-In;Lee, Sung-Won;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.396-401
    • /
    • 2016
  • Owing to developments in the internet of things, many products have developed and various researches have processed. Smart home systems in Internet of things area are receiving attention from many people than the other areas. Autonomous mobile robots perform various parts in many industries. In this paper, a smart housekeeping robot was implemented using internet of things and an autonomous mobile robot. In order to make a smart housekeeping robot, Raspberry Pi, wireless USB camera, and uBrain robot of Huins Corp. is used. To control the robot, cell-phone connected with IP of Raspberry Pi, and then Raspberry Pi connected with uBrain robot using Bluetooth. a smart housekeeping robot was controlled using commands of a cell-phone application. If some user wants to move a robot automatically, we implemented that a robot can be chosen an autonomous driving mode from the user. In addition, we checked a realtime video using a cell-phone and computer. This smart housekeeping robot can help user check their own homes in real time.

Design and Implementation of Surveillance and Combat Robot Using Smart Phone (스마트폰을 이용한 정찰 및 전투 로봇의 설계와 구현)

  • Kim, Do-Hyun;Park, Young-Sik;Kwon, Sung-Gab;Yang, Yeong-Yil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.93-98
    • /
    • 2011
  • In this paper, we propose the surveillance and combat robot framework for remote monitoring and robot control on the smart phone, which is implemented with the fusion technology called RITS(Robot technology & Information Technology System). In our implemented system, the camera phone mounted on the robot generates signals to control the robot and sends images to the smart phone of the operator. Therefore, we can monitor the surrounding area of the robot with the smart phone. Besides the control of the movement of the robot, we can fire the weapons armed on the robot by sending the fire command. From experimental results, we can conclude that it's possible to control the robot and monitor the surrounding area of the robot and fire the weapons in real time in the region where the 3G(Generation) mobile communication is possible. In addition, we controlled the robot using the 2G mobile communication or wired phone when the robot is in the visual range.

RFID Smart Floor for Mobile Robot (이동로봇을 위한 RFID Smart Floor)

  • Kang, Soo-Hyeok;Kim, Yong-Ho;Moon, Byoung-Joon;Kim, Dong-Han
    • 전자공학회논문지 IE
    • /
    • v.48 no.4
    • /
    • pp.30-39
    • /
    • 2011
  • This paper proposed a new concept of information space called Smart Floor. Smart Floor is an intelligent space where a mobile robot can read and write specific information through Radio Frequency IDentification (RFID) tags which are mounted on Smart Floor to drive its goal position. RFID tag packaging technology is described for building Smart Floor. Also a mobile robot equipped passive RFID System with ultra high frequency (UHF) bandwidth has developed. The information that consists of an absolute position in the Smart Floor and desired direction saved on RFID tags is a simulated Q-value based on Q-learning algorithm. Proposed Smart Floor will be a proper method to communicate between space and robot.

The Study on Evaluation Method of Pest Control Robot Requirements for Smart Greenhouse (스마트 온실 방제 로봇의 요구조건을 고려한 평가 방법 연구)

  • Kim, Kyoung-Chul;Ryuh, Beom-Sahng;Lee, Siyoung;Kim, Gookhwan;Lee, Meonghun;Hong, Young-ki;Kim, Hyunjong;Yu, Byeong-Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.318-325
    • /
    • 2019
  • Recently, research and development on agricultural robots have been on the rise as the interest in smart farming has increased. Robots used in smart greenhouses should be taken into account with the working characteristics and growing environment. This study examined cleaning robots developed through the environmental analysis of smart greenhouses. This study assessed the evaluation method considering the requirements of the pest control robot applicable to the smart greenhouse. The performance and quality assessment criteria were established to conduct tests through the requirements of robots. The required functions and goals of the pest control robot were derived by referring to the robot-related standards. A driving and working ability test was conducted to assess the performance of the robot. The driving test was conducted on the driving performance of the robot and the work capability was tested on the pest control performance. In addition, a durability test was conducted to assess the quality of the robot. The required factors for smart greenhouse robots were derived from the test results. The study results are expected be a standard for an evaluation of a variety of robots for applications to smart greenhouses.

A Human-Robot Interaction Entertainment Pet Robot (HRI 엔터테인먼트 애완 로봇)

  • Lee, Heejin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.179-185
    • /
    • 2014
  • In this paper, a quadruped walking pet robot for human-robot interaction, a robot-controller using a smart phone application program, and a home smart control system using sensor informations providing from the robot are described. The robot has 20 degree of freedom and consists of various sensors such as Kinect sensor, infrared sensor, 3 axis motion sensor, temperature/humidity sensor, gas sensor and graphic LCD module. We propose algorithms for the robot entertainment: walking algorithm of the robot, motion and voice recognition algorithm using Kinect sensor. emotional expression algorithm, smart phone application algorithm for a remote control of the robot, and home smart control algorithm for controlling home appliances. The experiments of this paper show that the proposed algorithms applied to the pet robot, smart phone, and computer are well operated.

A study on feature points matching for 3D reconstruction using Column Space Fitting (CSF) (Column Space Fitting (CSF)을 이용한 3차원 복원을 위한 특징점 매칭에 대한 연구)

  • Oh, Jangseok;Hong, Hyunggil;Woo, Seongyong;Song, Suhwan;Seo, Kapho;Kim, Daehee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.389-390
    • /
    • 2018
  • 본 논문에서는 3차원 복원을 위한 특징점 추출 및 매칭에 대한 보다 정확한 방법을 제안한다. 이 방법은 컴퓨터 비전의 기본이 되는 분야로 복원뿐 만 아니라 SLAM과 같은 지도 작성 및 자율 운행에도 필요한 방법이다. 본 연구는 3차원 물체 복원을 위해서 사용하는 방법 중 하나인 Column space fitting(CSF)을 이용하여 turntable-image data에 적용하여 성능을 평가하여 정확성을 검증을 한다. 오늘날 3D scanner를 이용하여 물체를 3차원 모델을 획득하고 3D프린터를 이용하여 다양한 분야에 적용한다. 그러나 고가의 장비이기 때문에 접근성이 떨어진다. 본 연구는 영상들만을 가지고 기하학적 계산을 통해 3차원 모델을 획득한다. 본 연구결과는 기존의 방법인 KLT 알고리즘과 비교하여 RMSE의 값을 약 5배를 줄이는 성능 향상을 보인다.

  • PDF

Development of Smart Tape Attachment Robot in the Cold Rolled Coil with 3D Non-Contact Recognition (3D 비접촉 인식을 이용한 냉연코일 테이프부착 로봇 개발)

  • Shin, Chan-Bai;Kim, Jin-Dae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1122-1129
    • /
    • 2009
  • Recently taping robot with smart recognition function have been studied in the coil manufacturing field. Due to the difficulty of 3D surface processing from the complicated working environment, it is not easy to accomplish smart tape attachment motion with non-contact sensor. To solve these problems the applicable surface recognition algorithm and a flexible sensing device has been recommended. In this research, the fusion method between 1D displacement and 3D laser scanner is applied for robust tape attachment about cold rolled coil. With these sensors we develop a two-step exploration and the smart algorithm for the awareness of non-aligned coil's information. In the proposed robot system for tape attachment, the problem is reduced to coil's radius searching with laser displacement sensor at first, and then position and orientation detection with 3D laser scanner. To get the movement at the robot's base frame, the hand-eye compensation between robot's end effector and sensing device should be also carried out respectively. In this paper, we examine the auto-coordinate transformation method in the calibration step for the real environment usage. From the experimental results, it was shown that the taping motion of robot had a robust under the non-aligned cold rolled coil.

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures

  • Seo, Dae-Sung;Won, Dae-Heui;Yang, Gwang-Woong;Choi, Moo-Sung;Kwon, Sang-Ju;Park, Joon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1797-1801
    • /
    • 2005
  • SLAM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important issues in mobile robot research. Until now expensive sensors like a laser sensor have been used for the mobile robot's localization. Currently, as the RFID reader devices like antennas and RFID tags become increasingly smaller and cheaper, the proliferation of RFID technology is advancing rapidly. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used to identify the mobile robot's location on the smart floor. We discuss a number of challenges related to this approach, such as RFID tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, because the reader just can senses whether a RFID tag is in its sensing area, the localization error occurs as much as the sensing area of the RFID reader. And, until now, there is no study to estimate the pose of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. We use the Markov localization algorithm to reduce the location(X,Y) error and the Kalman Filter algorithm to estimate the pose(q) of a mobile robot. We applied these algorithms in our experiment with our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors like odometers and RFID tags for the mobile robot's localization on the smart floor.

  • PDF

A Study on Improving the Computational Complexity of SLAM for Intelligent Robot Utilizing Smart Phone (스마트폰을 활용한 지능형 로봇 SLAM 기법의 오버헤드 개선방안에 관한 연구)

  • Lee, Cheol-Won;Jeon, Heung-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.25-31
    • /
    • 2014
  • In this paper, we propose a new scheme for enhancing the computational SLAM overhead of intelligent robots. The idea is to use the idle resource of Smart Phone as a SLAM processor. We designed a new model for incorporating the smart phone with robot. According to the experimental results, we found that the smart phone was very helpful for improving the SLAM performance and the gain from the smart phone was increased as robot moves faster.