• Title/Summary/Keyword: Smart factory level

Search Result 79, Processing Time 0.021 seconds

LSTM-based Anomaly Detection on Big Data for Smart Factory Monitoring (스마트 팩토리 모니터링을 위한 빅 데이터의 LSTM 기반 이상 탐지)

  • Nguyen, Van Quan;Van Ma, Linh;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.789-799
    • /
    • 2018
  • This article presents machine learning based approach on Big data to analyzing time series data for anomaly detection in such industrial complex system. Long Short-Term Memory (LSTM) network have been demonstrated to be improved version of RNN and have become a useful aid for many tasks. This LSTM based model learn the higher level temporal features as well as temporal pattern, then such predictor is used to prediction stage to estimate future data. The prediction error is the difference between predicted output made by predictor and actual in-coming values. An error-distribution estimation model is built using a Gaussian distribution to calculate the anomaly in the score of the observation. In this manner, we move from the concept of a single anomaly to the idea of the collective anomaly. This work can assist the monitoring and management of Smart Factory in minimizing failure and improving manufacturing quality.

A Study on the Policy Direction for the Introduction and Activation of Smart Factories by Korean SMEs (우리나라 중소기업의 스마트 팩토리 수용 및 활성화 제고를 위한 정책 방향에 대한 연구)

  • Lee, Yong-Gyu;Park, Chan-Kwon
    • Korean small business review
    • /
    • v.42 no.4
    • /
    • pp.251-283
    • /
    • 2020
  • The purpose of this study is to provide assistance to the establishment of related policies to improve the level of acceptance and use of smart factories for SMEs in Korea. To this end, the Unified Technology Acceptance Model (UTAUT) was extended to select additional factors that could affect the intention to accept technology, and to demonstrate this. To achieve the research objective, a questionnaire composed of 7-point Likert scales was prepared, and a survey was conducted for manufacturing-related companies. A total of 136 questionnaires were used for statistical processing. As a result of the hypothesis test, performance expectation and social influence had a positive (+) positive effect on voluntary use, but effort expectation and promotion conditions did not have a significant effect. As an extension factor, the network effect and organizational characteristics had a positive (+) effect, and the innovation resistance had a negative effect (-), but the perceived risk had no significant effect. When the size of the company is large, the perceived risk and innovation resistance are low, and the level of influencing factors for veterinary intentions, veterinary intentions, and veterinary behaviors are excluded. Through this study, factors that could have a positive and negative effect on the adoption (reduction) of smart factory-related technologies were identified and factors to be improved and factors to be reduced were suggested. As a result, this study suggests that smart factory-related technologies should be accepted.

A Systematic Review on Smart Manufacturing in the Garment Industry

  • Kim, Minsuk;Ahn, Jiseon;Kang, Jihye;Kim, Sungmin
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.660-675
    • /
    • 2020
  • Since Industry 4.0, there is a growing interest in smart manufacturing across all industries. However, there are few studies on this topic in the garment industry despite the growing interest in implementing smart manufacturing. This paper presents the feasibility and essential considerations for implementing smart manufacturing in the garment industry. A systematic review analysis was conducted. Studies on garment manufacturing and smart manufacturing were searched separately in the Scopus database. Key technologies for each manufacturing were derived by keyword analysis. Studies on key technologies in each manufacturing were selected; in addition, bibliographic analysis and cluster analysis were conducted to understand the progress of technological development in the garment industry. In garment manufacturing, technology studies are rare as well as locally biased. In addition, there are technological gaps compared to other manufacturing. However, smart manufacturing studies are still in their infancy and the direction of garment manufacturing studies are toward smart manufacturing. More studies are needed to apply the key technologies of smart manufacturing to garment manufacturing. In this case, the progress of technology development, the difference in the industrial environment, and the level of implementation should be considered. Human components should be integrated into smart manufacturing systems in a labor-intensive garment manufacturing process.

The Development of Protocol for Construction of Smart Factory (스마트 팩토리 구축을 위한 프로토콜 개발)

  • Lee, Yong-Min;Lee, Won-Bog;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1096-1099
    • /
    • 2019
  • In this paper, we propose the protocol for construction of smart factory. The proposed protocol for construction of smart factory consists of an OPC UA Server/Client, a technology of TSN realtime communication, a NTP & PTP time synchronization protocol, a FieldBus protocol and conversion module, a technology of saving data for data transmit latency and synchronization protocol. OPC UA server/client is a system integration protocol which makes interface industrial hardware device and supports standardization which allows in all around area and also in not independent from any platform. A technology of TSN realtime communication provides an high sensitive time management and control technology in a way of sharing specific time between devices in the field of high speed network. NTP & PTP time synchronization protocol supports IEEE1588 standardization. A fieldbus protocol and conversion module provide an extendable connectivity by converting industrial protocol to OPC. A technology of saving data for data transmit latency and synchronization protocol provide a resolution function for a loss and latency of data. Results from testing agencies to assess the performance of proposed protocol for construction of smart factory, response time was 0.1367ms, synchronization time was 0.404ms, quantity of concurrent access was 100ea, quantity of interacting protocol was 5ea, data saving and synchronization was 1,000 nodes. It produced the same result as the world's highest level.

Development of Smart Mining Technology Level Diagnostics and Assessment Model for Mining Sites (광산 현장의 스마트 마이닝 기술 수준 진단평가 모델 개발)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.78-92
    • /
    • 2022
  • In this study, we proposed a diagnostics and assessment model for mining sites that can evaluate the smart mining technology level in a systematic and structured way. For this, the maturity of the smart mining was defined, and detailed assessment items of the diagnostics and assessment model for smart mining were derived by considering the smart factory diagnostics and assessment model (KS X 9001-3) used in the manufacturing industry. While maintaining the existing system, the existing 46 detailed assessment items were modified to be suitable for mining. As a result, a total of 29 detailed assessment items were derived in the areas of promotion strategy, process, information system and automation, and performance. Based on this, a questionnaire was designed to diagnose the level of smart mining technology, and assessment was performed by applying it to domestic iron mines. The level of smart mining technology in the study area was found to be level 2, and it could be inferred that it was about 40% lower than the average smart level of the general manufacturing industry. In addition, by using the developed model, it was possible to recognize the weak points of the mine at each stage of the introduction, operation, and advancement of smart mining, and to suggest investment and improvement directions.

Function Expansion of Human-Machine Interface(HMI) for Small and Medium-sized Enterprises: Focused on Injection Molding Industries (중소기업을 위한 인간-기계 인터페이스(HMI) 기능 확장: 사출성형기업 중심으로)

  • Sungmoon Bae;Sua Shin;Junhong Yook;Injun Hwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.150-156
    • /
    • 2022
  • As the 4th industrial revolution emerges, the implementation of smart factories are essential in the manufacturing industry. However, 80% of small and medium-sized enterprises that have introduced smart factories remain at the basic level. In addition, in root industries such as injection molding, PLC and HMI software are used to implement functions that simply show operation data aggregated by facilities in real time. This has limitations for managers to make decisions related to product production other than viewing data. This study presents a method for upgrading the level of smart factories to suit the reality of small and medium-sized enterprises. By monitoring the data collected from the facility, it is possible to determine whether there is an abnormal situation by proposing an appropriate algorithm for meaningful decision-making, and an alarm sounds when the process is out of control. In this study, the function of HMI has been expanded to check the failure frequency rate, facility time operation rate, average time between failures, and average time between failures based on facility operation signals. For the injection molding industry, an HMI prototype including the extended function proposed in this study was implemented. This is expected to provide a foundation for SMEs that do not have sufficient IT capabilities to advance to the middle level of smart factories without making large investments.

Influence of smart factor's implementing energy management system on innovation resistance and performance (스마트팩토리의 에너지관리시스템 수용확산요인이 구성원의 혁신저항 및 업무성과에 미치는 영향)

  • Chu, Jin-Young;Lee, Dong-Hun
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.103-116
    • /
    • 2018
  • In this study, we investigated the influence of smart factory's implementing energy management system on innovation resistance and work performance. We surveyed and analyzed 211 employees of system construction companies in the metropolitan area. In order to increase the introduction performance through diffusion of the energy management system, it is found that it is important to support the organizational-level management strategy to reduce the user's resistance to innovation. In conclusion, this study has implications for positively leading to the efficiency and management performance of the manufacturing process of the manufacturing enterprises, and it is necessary to follow - up studies considering the characteristics of the energy management system and the expansion of the research scope in the future.

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

A Study on Smart Factory System Design for Screw Machining Management (나사 가공 관리를 위한 스마트팩토리 시스템 설계에 관한 연구)

  • Lee, Eun-Kyu;Kim, Dong-Wan;Lee, Sang-Wan;Kim, Jae-joong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.329-331
    • /
    • 2018
  • In this paper, we propose a monitoring system that starts with the supply of raw materials for threading, is processed into a lathe machine, and checks for defects of the product are automatically performed by the robot with Smart Factory technology through assembly and disassembly. Completion check according to the production instruction quantity and production instruction is made by checking the production status according to whether or not the raw material is worn by the displacement sensor, and checking the pitch and the contour of the processed female and male to determine OK and NG. The robotic system acts as a relay for loading and unloading of raw materials, pallet transfer, and overall process, and it acts as an intermediary for organically driving. The location information of the threaded products is collected by using the non-contact wireless tag and the energy saving system Production efficiency and utilization rate were checked. The environmental sensor collects the air-conditioning environment data (temperature, humidity), measures the temperature and humidity accurately, and checks the quality of product processing. It monitors and monitors the driving hazard level environment (overheating, humidity) of the product. Controls for CNC and robot module PLC as a heterogeneous system.

  • PDF

Accurate Prediction of VVC Intra-coded Block using Convolutional Neural Network (VVC 화면 내 예측에서의 딥러닝 기반 예측 블록 개선을 통한 부호화 효율 향상 기법)

  • Jeong, Hye-Sun;Kang, Je-Won
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.477-486
    • /
    • 2022
  • In this paper, we propose a novel intra-prediction method using convolutional neural network (CNN) to improve a quality of a predicted block in VVC. The proposed algorithm goes through a two-step procedure. First, an input prediction block is generated using one of the VVC intra-prediction modes. Second, the prediction block is further refined through a CNN model, by inputting the prediction block itself and reconstructed reference samples in the boundary. The proposed algorithm outputs a refined block to reduce residual signals and enhance coding efficiency, which is enabled by a CU-level flag. Experimental results demonstrate that the proposed method achieves improved rate-distortion performance as compared a VVC reference software, I.e., VTM version 10.0.