• Title/Summary/Keyword: Smart city development

Search Result 319, Processing Time 0.024 seconds

Development of the Precision Image Processing System for CAS-500 (국토관측위성용 정밀영상생성시스템 개발)

  • Park, Hyeongjun;Son, Jong-Hwan;Jung, Hyung-Sup;Kweon, Ki-Eok;Lee, Kye-Dong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.881-891
    • /
    • 2020
  • Recently, the Ministry of Land, Infrastructure and Transport and the Ministry of Science and ICT are developing the Land Observation Satellite (CAS-500) to meet increased demand for high-resolution satellite images. Expected image products of CAS-500 includes precision orthoimage, Digital Surface Model (DSM), change detection map, etc. The quality of these products is determined based on the geometric accuracy of satellite images. Therefore, it is important to make precision geometric corrections of CAS-500 images to produce high-quality products. Geometric correction requires the Ground Control Point (GCP), which is usually extracted manually using orthoimages and digital map. This requires a lot of time to acquire GCPs. Therefore, it is necessary to automatically extract GCPs and reduce the time required for GCP extraction and orthoimage generation. To this end, the Precision Image Processing (PIP) System was developed for CAS-500 images to minimize user intervention in GCP extraction. This paper explains the products, processing steps and the function modules and Database of the PIP System. The performance of the System in terms of processing speed, is also presented. It is expected that through the developed System, precise orthoimages can be generated from all CAS-500 images over the Korean peninsula promptly. As future studies, we need to extend the System to handle automated orthoimage generation for overseas regions.

Development and Exploration of Safety Performance Functions Using Multiple Modeling Techniques : Trumpet Ramps (다양한 통계 기법을 활용한 안전성능함수 개발 및 비교 연구 : 트럼펫형 램프를 중심으로)

  • Yang, Samgyu;Park, Juneyoung;Kwon, Kyeongjoo;Lee, Hyunsuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.35-44
    • /
    • 2021
  • In recent times, several studies have been conducted focusing on crashes occurring on the main segment of the highway. However, there is a dearth of research dealing with traffic safety relating to other highway facilities, especially ramp areas. According to the Korea Expressway Corporation's Expressway Information Service, 6,717 crashes have occurred on ramps in the five years from 2015~2019, which accounts for about 15% of all highway accidents. In this study, the simple and full safety performance functions (SPFs) were evaluated and explored using different statistical distributions (i.e., Poisson Gamma (PG) and Poisson Inverse Gaussian (PIG)) and techniques (i.e., fixed effects (FE) and random effects (RE)) to provide more accurate crash prediction models for highway ramp sections. Data on the geometric characteristics of traffic and roadways were collected from various systems and with extensive efforts using a street-view application. The results showed that the PIG models present more accurate crash predictions in general. The results also indicated that the RE models performed better than FE models for simple and full SPFs. The findings from this study offer transportation practitioners using the Korea Expressway Corporation's Expressway a dependable reference to enhance and understand traffic safety in ramp areas based on accurate crash prediction models and empirical evidence.

Policy Recommendation for New Regional Industrial Policy in the Fourth Industrial Revolution Era (4차 산업혁명시대의 새로운 지역산업정책방향에 대한 정책제언)

  • Lee, Daeshik
    • Journal of Digital Convergence
    • /
    • v.17 no.6
    • /
    • pp.193-200
    • /
    • 2019
  • This study analyzes the current status and performance of regional industrial policy in the face of the weakening industrial competitiveness under the global trend of the 4th industrial revolution and suggests the policy direction that regional industrial policy as a new national growth strategy. This study focuses on the suggestion of new regional industrial policy framework under new policy environment based on literature review. We propose a new industrial policy framework that simultaneously pursues equality between regions and efficiency within the region at the same time. As a core policy recommendation, we suggest first, establishing the region-centered industrial policy governance, second, strengthening planning function of local government through human resource development and institutionalized national government consulting, and the third, constructing lifestyle industry-ecosystem based on cultural asset and identity of region, fourth, utilizing Smart City, as a platform for participatory innovation, entrepreneurial and capital attraction, and cultivating new industry based on public procurement and data. Main suggestions of this study would be a new guideline coping with the declining industrial competitiveness and the Fouth Industrial Revolution. Details would be necessary.

Development of Time-based Safety Performance Function for Freeways (세부 집계단위별 교통 특성을 반영한 고속도로 안전성능함수 개발)

  • Kang, Kawon;Park, Juneyoung;Lee, Kiyoung;Park, Joonggyu;Song, Changjun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.203-213
    • /
    • 2021
  • A vehicle crash occurs due to various factors such as the geometry of the road section, traffic, and driver characteristics. A safety performance function has been used in many studies to estimate the relationship between vehicle crash and road factors statistically. And depends on the purpose of the analysis, various characteristic variables have been used. And various characteristic variables have been used in the studies depending on the purpose of analysis. The existing domestic studies generally reflect the average characteristics of the sections by quantifying the traffic volume in macro aggregate units such as the ADT, but this has a limitation that it cannot reflect the real-time changing traffic characteristics. Therefore, the need for research on effective aggregation units that can flexibly reflect the characteristics of the traffic environment arises. In this paper, we develop a safety performance function that can reflect the traffic characteristics in detail with an aggregate unit for one hour in addition to the daily model used in the previous studies. As part of the present study, we also perform a comparison and evaluation between models. The safety performance function for daily and hourly units is developed using a negative binomial regression model with the number of accidents as a dependent variable. In addition, the optimal negative binomial regression model for each of the hourly and daily models was selected, and their prediction performances were compared. The model and evaluation results presented in this paper can be used to determine the risk factors for accidents in the highway section considering the dynamic characteristics. In addition, the model and evaluation results can also be used as the basis for evaluating the availability and transferability of the hourly model.

A Study on the Supply of First/Last Mile Transportation Methods Based on ABATA Travel Patterns Analysis for the Provision of MaaS (MaaS 제공을 위한 ABATA 통행 분석 기반의 First/Last Mile 이동 수단 공급 방안 연구)

  • Choi, Jaeon;Song, Jaein;Kang, Min Hee;Eom, Jinki;Hwang, Kee Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.159-181
    • /
    • 2022
  • Today, people in cities use differentthe types of transportation that rangepeople use in cities have diversified from existing public transportation, cars, taxis to shared bicycles and shared electric kickboards. In addition, with the development of mobile platform -based search, order, and payment services, and transportation services have also begun to change into platform-based integrated services. In particular, MaaS, which has emerged as an integrated mobile service and, is currently being studied and operated worldwide., However, MaaS but remains at the level of the integrated provision of the existing public transportation. As a result of Specifically, the results of a literature review on this issue reveal that, the First/Last Mile problem raised at the current level of MaaS is likely to be solved by establishing an improved policy incorporating new means of transportation. Therefore, this study aims to establish a First/Last Mile transportation supply plan for successful MaaS provision. This establishment is realized by analyzing the traffic patterns of urban populations usingbased on the ABATA system,, an activity-based traffic analysis model withevaluated as having higher analysis power on people's traffic.

Analysis of Digital Twin Technology Trends Related to Geoscience and Mineral Resources after the Korean New Deal Policy in 2020 (2020년 한국판 뉴딜 정책 이후 지질자원 분야 디지털 트윈 기술개발 동향 분석)

  • Ahn, Eun-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.659-670
    • /
    • 2021
  • In this study, we analyzed changes in policies after the Korean New Deal Policy in 2020, metaverse and 6th generation communication technology. In the research and development of geoscience and mineral resources, we emphasized on the connection between smart cities and digital twins by focusing on the linkage of the real world and geo-information. Further, we examined trends in developing digital twins after the Korean New Deal Policy in 2020 that focused on three-dimensional visualization technology, the first stage in implementing digital twins, and real-time monitoring technology of underground information, the second implementing stage. As results of this study, we emphasized on the efforts to provide accurate underground information based on geology, groundwater and geo-environment and to analyze and predict near-real-time levels of available underground information to the industry, local governments and the central governments. Research and development that integrate the fields of geology, environment, and information is required to lead national digital twin policies and smart city policies owing to the acceleration of the digital economy in Korea and globally during the post-Corona era.

Development of disaster severity classification model using machine learning technique (머신러닝 기법을 이용한 재해강도 분류모형 개발)

  • Lee, Seungmin;Baek, Seonuk;Lee, Junhak;Kim, Kyungtak;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.261-272
    • /
    • 2023
  • In recent years, natural disasters such as heavy rainfall and typhoons have occurred more frequently, and their severity has increased due to climate change. The Korea Meteorological Administration (KMA) currently uses the same criteria for all regions in Korea for watch and warning based on the maximum cumulative rainfall with durations of 3-hour and 12-hour to reduce damage. However, KMA's criteria do not consider the regional characteristics of damages caused by heavy rainfall and typhoon events. In this regard, it is necessary to develop new criteria considering regional characteristics of damage and cumulative rainfalls in durations, establishing four stages: blue, yellow, orange, and red. A classification model, called DSCM (Disaster Severity Classification Model), for the four-stage disaster severity was developed using four machine learning models (Decision Tree, Support Vector Machine, Random Forest, and XGBoost). This study applied DSCM to local governments of Seoul, Incheon, and Gyeonggi Province province. To develop DSCM, we used data on rainfall, cumulative rainfall, maximum rainfalls for durations of 3-hour and 12-hour, and antecedent rainfall as independent variables, and a 4-class damage scale for heavy rain damage and typhoon damage for each local government as dependent variables. As a result, the Decision Tree model had the highest accuracy with an F1-Score of 0.56. We believe that this developed DSCM can help identify disaster risk at each stage and contribute to reducing damage through efficient disaster management for local governments based on specific events.

A study on the development of quality control algorithm for internet of things (IoT) urban weather observed data based on machine learning (머신러닝기반의 사물인터넷 도시기상 관측자료 품질검사 알고리즘 개발에 관한 연구)

  • Lee, Seung Woon;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1071-1081
    • /
    • 2021
  • In addition to the current quality control procedures for the weather observation performed by the Korea Meteorological Administration (KMA), this study proposes quality inspection standards for Internet of Things (IoT) urban weather observed data based on machine learning that can be used in smart cities of the future. To this end, in order to confirm whether the standards currently set based on ASOS (Automated Synoptic Observing System) and AWS (Automatic Weather System) are suitable for urban weather, usability was verified based on SKT AWS data installed in Seoul, and a machine learning-based quality control algorithm was finally proposed in consideration of the IoT's own data's features. As for the quality control algorithm, missing value test, value pattern test, sufficient data test, statistical range abnormality test, time value abnormality test, spatial value abnormality test were performed first. After that, physical limit test, stage test, climate range test, and internal consistency test, which are QC for suggested by the KMA, were performed. To verify the proposed algorithm, it was applied to the actual IoT urban weather observed data to the weather station located in Songdo, Incheon. Through this, it is possible to identify defects that IoT devices can have that could not be identified by the existing KMA's QC and a quality control algorithm for IoT weather observation devices to be installed in smart cities of future is proposed.

A Study on the Image Perception in Accordance with Changes in Design Elements of Children's Dress - Focusing on Mothers of 5~6 Year-Old Female Children in Gwangju - (아동 드레스의 디자인 요소 변화에 따른 이미지 지각 연구 - 광주광역시 만 5~6세 여아 어머니를 중심으로 -)

  • Yang, Hyo-Jung;Park, Soon-Chun
    • Fashion & Textile Research Journal
    • /
    • v.19 no.3
    • /
    • pp.267-279
    • /
    • 2017
  • The necessity on children dresses for cultural events and emotional aspects in designs have become important according to the development of kids industry and revitalization of party culture, and so grasping emotional requirements of consumers (image perception) is necessary actually. For the purpose of this research, the study used 27 color pictures on the whole bodies of preschool children who wore children dresses that mixed clothing design factors differently (sleeve, skirt length, waist line, materials, color, decoration type and location) through a survey. Regarding the survey objects, this study objected preschool children of 5~6 years old girl's mothers who lived in Gwangju Metropolitan City, and its results were same as follows. First, the mothers evaluated children dresses like 'beautiful,' smart,' 'cute,' 'tidy' images. Second, sleeve, waist line, skirt length, materials, color, decoration type and location appeared to clothing cues affecting influences to overall image perception of children dresses, and decorations were implicated as salient cues that affected greater influences to image perception of children dress wearers than other clothing design factors especially. Based on the research, this study expects that various forthcoming researches have been made continuously, and it could become a guideline for the development of children dress industry afterwards.

Analysis of the Status and Limitation of the Biotope Area Ratio on Strategic Environmental Impact Assessment and Environmental Impact Assessment (전략환경영향평가 및 환경영향평가 사업에서의 생태면적률 적용 현황 및 한계점 분석)

  • Park, Jin-Han;Lee, Dong-Kun;Kim, Hyo-min;Sung, Hyun-Chan;Jeon, Seong-Woo;Choi, Jae-yong;Lee, Chang-Seok;Hwang, Sang-Yeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.1
    • /
    • pp.55-71
    • /
    • 2018
  • To improve the ecological function of urban areas, the guideline for applying the Biotope Area Ratio to the Environmental Impact Assessment (EIA) was developed in 2005 and modified in the July, 2017. This study investigates whether the guideline has been actually practiced in the real world by searching reports including 648 cases of the Strategic Environmental Impact Assessment (SEIA) and 471 cases of the EIA. The results show that the 38% of SEIA and the 43% of EIA include sections about Biotope Area Ratio, and the 15% of SEIA and the 25 % of EIA are satisfied the threshold of the Biotope Area Ratio suggested by the guideline. The statistical analysis results show that this low level of practice was not improved through the modification of the guideline in 2017. This is because the guideline is forcibleness, its explanation is unclear, and stockholders' understanding of it lacks. In addition, lack of tracking management on SEIA and EIA also contributes to the low level of practice of the guideline. To promote the practice, the efforts to legislate and publicize the guideline are required.