• Title/Summary/Keyword: Smart charging

Search Result 154, Processing Time 0.031 seconds

Development of Smart PCS(Power Conditioning System) Integrating PV/ESS for Home (가정용 태양광/ESS 통합 스마트 PCS 개발)

  • Lee, Sang-Hak
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.193-200
    • /
    • 2016
  • Research and development of energy self-consumption introducing photovoltaic and energy storage system at home is very active. This system can manage the home energy in which it charges the electricity generated during the day and uses it during high electricity bills. However, it not yet made up the residential real-time pricing in Korea but it can reduce electricity usage to a certain target on the progressive. In order to introduce the home photovoltaic, it requires PCS(Power Conditioning System). This converts the direct current into alternating current by the electricity generated and used to perform charging and discharging of the energy storage system. The market for self-consumption smart home system is currently increasing because the interests of the general public about solar power, energy storage systems increased. The result of this study is installed on the room environment and the effect was analyzed on the assumption of real-time pricing.

An Exploratory Study on Consumer Satisfaction and TAM of High Technology Electric Pen Product (전자펜 하이테크 상품의 소비자 만족도와 기술수용모델에 관한 탐색적 연구)

  • Kim, Yeon-Jeong
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.161-168
    • /
    • 2019
  • The purpose of this study analyze consumer usage characteristics and product development guide of electronic pen based on TAM theory(Davies, 1989). Research methods apply contents analysis(qualitative research) and Activity/Inactivity analysis of main consumer participation. Research results are as follows. Active consumer indicated 30-49 age, male, office job and research fellow. And they suggested stable power supply system, App connected pen function extension, add the modified pen function, advanced data recognition of pen, advanced take note ability and stable grip feeling of pen, selected line width, synchronization improvement with other smart device and charging function. These result indicated the importance product improvement diffusion factor of early market to main market. The future research of electric pen focused on different product strategy between electric pen and smart device connected electric pen.

Concept and Model of Energy Harvesting using Eddy Current (와전류를 이용한 에너지 포집의 개념과 모델)

  • Han, Ji-Hoon;Park, Sung-Keun;Ju, Gwang-Il;Lim, Seung-Hyun;Oh, Il-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3506-3511
    • /
    • 2007
  • The energy harvesting using smart materials has been extensively investigated to supply electric power to wireless sensor systems. In this paper, the energy harvesting using eddy current was studied with the integrated magnetic cantilever beam system. If a large conductive metal plate moves through a magnetic field which intersects perpendicularly to the sheet, the magnetic field will induce small rings of current which will actually create internal magnetic fields opposing the change. This eddy current that was induced in the coiled conductive sheet from the mechanical vibration was converted to chemical energy by charging batteries. The experimental results show that the eddy current generated the electric power up to max 31.2mW. Additionally the vibration reduction of the mechanical cantilever beam was observed by the energy dissipation in the electro-magnetic coupled system. The present result shows that the vibration level of the first natural frequency was reduced up to 7.7dB

  • PDF

Soft-Switched Synchronous Buck Converter for Battery Chargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.138-146
    • /
    • 2019
  • In this paper, we proposed a soft-switched synchronous buck converter, which can perform charging the battery. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss, resulting in small conduction loss, also. In this reason, the efficiency of the converter can be greatly improved even in high frequency. The size and weight of the converter can be reduced by high frequency operation of the converter. In this paper, we designed a battery charger with a switching frequency of 100 kHz. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery charger had soft switching characteristics. The simulation results for transient response to charge current for the designed converter show that the converter responds to charge current commands quickly within 0.05 ms.

Development of PC-based Auto Inspection System for Smart Battery Protection Circuit Module (PC기반의 스마트 배터리 보호모듈 자동 검사 시스템 개발)

  • Yoon, Tae-Sung;Jang, Gi-Won;Park, Ju-No;Lee, Jeong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.275-277
    • /
    • 2005
  • In a lithium-ion battery which is being used in many portable electronic goods, electrolyte is disaggregated and then the gas is happened when electric charging volt is over the 4.5V. So, the pressure on the safety valve is increased and electrolyte is leaked out in the cell. It leads to the risk of explosion. On the other hand, in the case which the battery is discharged excessively, the negative pole is damaged and the performance of the battery is deteriorated. The protection module of a lithium-ion battery is used for preventing such risk and the inspection system is needed to check the performance of such protection module. In this research, a PC-based auto inspection system is developed for the inspection of a battery protection module using Dallas chipset. In the inspection system, AVRl28 chip is used as a controller and the communication protocol is developed for the data communication between the protection module and the AVR128 chip. And GPIB interface is used for the control of measuring devices. Also, MMI environment is developed using LabView for convenient monitoring by the tester.

  • PDF

Optimized Design of Low-power Adiabatic Dynamic CMOS Logic Digital 3-bit PWM for SSL Dimming System

  • Cho, Seung-Il;Mizunuma, Mitsuru;Yokoyama, Michio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • The size and power consumption of digital circuits including the dimming circuit part will increase for high-performance solid state lighting (SSL) systems in the future. This study examined the low-power consumption of adiabatic dynamic CMOS logic (ADCL) due to the principles of adiabatic charging. Furthermore, the designed low-power ADCL digital pulse width modulation (PWM) was optimized for SSL dimming systems. For this purpose, an ADCL digital 3-bit PWM was optimized in two steps. In the first step, the architecture of the ADCL digital 3-bit PWM was miniaturized. In the second step, the clock cut-off circuit was designed and added to the ADCL PWM. As a result, compared to the original configuration, 60 transistors and 15 capacitors of ADCL digital 3-bit PWM were reduced for miniaturization. Moreover, the clock cut-off circuit, which controls wake-up and sleep mode of ADCL D-FFs, was designed. The power consumption of an optimized ADCL digital PWM for all bit patterns decreased by 54 %.

  • PDF

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

  • Anuar, Nazrul;Takahashi, Yasuhiro;Sekine, Toshikazu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This paper proposes a two-phase clocked adiabatic static CMOS logic (2PASCL) circuit that utilizes the principles of adiabatic switching and energy recovery. The low-power 2PASCL circuit uses two complementary split-level sinusoidal power supply clocks whose height is equal to $V_{dd}$. It can be directly derived from static CMOS circuits. By removing the diode from the charging path, higher output amplitude is achieved and the power consumption of the diode is eliminated. 2PASCL has switching activity that is lower than dynamic logic. We also design and simulate NOT, NAND, NOR, and XOR logic gates on the basis of the 2PASCL topology. From the simulation results, we find that 2PASCL 4-inverter chain logic can save up to 79% of dissipated energy as compared to that with a static CMOS logic at transition frequencies of 1 to 100 MHz. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

A Hybrid PCS Considering on a Residential Energy Storage System (가정용 ESS를 고려한 하이브리드 PCS)

  • Jung, Doo-Yong;Kim, Ji-Hwan;Choi, Seong-Chon;Lee, Su-Won;Han, Hee-Min;Won, Chung-Yuen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • In recent years, technology for storing a preliminary power or a surplus of photovoltaic energy is required. This technique, as well as store a preliminary energy and improve the reliability of the gird safety. This system can plan a efficient power generation through the flexibility of the power supply from the perspective of not only provider but also user. Accordingly, the realization of the smart grid can be expected. This paper proposes a hybrid PCS using a photovoltaic and a lithium-polymer battery with the characteristics of high density energy. The main energy source of a hybrid PCS is a photovoltaic, grid and the auxiliary energy source is a lithium-polymer battery. The operation of a proposed system in this paper is verified with simulation and experimental results.

Investigating the Impacts of Different Price-Based Demand Response Programs on Home Load Management

  • Rastegar, Mohammad;Fotuhi-Firuzabad, Mahmud;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1125-1131
    • /
    • 2014
  • Application of residential demand response (DR) programs are currently realized up to a limited extent due to customers' difficulty in manually responding to the time-differentiated prices. As a solution, this paper proposes an automatic home load management (HLM) framework to achieve the household minimum payment as well as meet the operational constraints to provide customer's comfort. The projected HLM method controls on/off statuses of responsive appliances and the charging/discharging periods of plug-in hybrid electric vehicle (PHEV) and battery storage at home. This paper also studies the impacts of different time-varying tariffs, i.e., time of use (TOU), real time pricing (RTP), and inclining block rate (IBR), on the home load management (HLM). The study is effectuated in a smart home with electrical appliances, a PHEV, and a storage system. The simulation results are presented to demonstrate the effectiveness of the proposed HLM program. Peak of household load demand along with the customer payment costs are reported as the consequence of applying different pricings models in HLM.

A Study on the Decision of Appropriate Subsidy Levels Regarding Electric Vehicles for V2G as Load Management Resources (V2G 전기자동차의 부하관리 자원 활용을 위한 적정 지원금 산정에 관한 연구)

  • Kim, Jung-Hoon;Hwang, Sung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.264-268
    • /
    • 2016
  • Recently, various energy efficiency optimization activities are ongoing globally by integrating conventional grids with ICT (Information and Communication Technology). In this sense, various smart grid projects, which power suppliers and consumers exchange useful informations bilaterally in real time, have been being carried out. The electric vehicle diffusion program is one of the projects and it has been spotlighted because it could resolve green gas problem, fuel economy and tightening environmental regulations. In this paper, the economics of V2G system which consists of electric vehicles and the charging infrastructure is evaluated comparing electric vehicles for V2G with common electric vehicles. Additional benefits of V2G are analyzed in the viewpoint of load leveling, frequency regulation and operation reserve. To find this benefit, electricity sales is modeled mathematically considering depth of discharge, maximum capacity reduction, etc. Benefit and cost analysis methods with the modeling are proposed to decide whether the introduction of V2G systems. Additionally, the methods will contribute to derive the future production and the unit cost of electric vehicle and battery and to get the technical and economic analysis.