• Title/Summary/Keyword: Smart Structure System

Search Result 823, Processing Time 0.03 seconds

Structural Vibration Analysis of Smart UAV 4-Degree of Freedom Ground Test System (스마트 무인기 4자유도 지상시험치구 구조진동해석)

  • Park, Kang-Kyun;Choi, Hyun-Chul;Kim, Dong-Man;Kim, Dong-Hyun;Ahn, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.593-598
    • /
    • 2009
  • In this study we present results for the design of ground test system for 4 degree of freedom(DOF) control test is one of the smart UAV ground test. This system is equipped with real smart UAV and Z direction DOF and 3 direction rotation DOF, Ensuring safe operation of the Smart UAV is a top priority. To this end, it is required to do structure analysis and test verification to confirm the design margin and safety. Based on the analysis, the ground test system has been redesigned to meet the structural conditions.

  • PDF

Electrical Variable Capacitor based on Symmetrical Switch Structure for RF Plasma System (대칭적인 스위치 구조 기반 RF 플라즈마 시스템 적용 전기적 가변 커패시터)

  • Min, Juhwa;Chae, Beomseok;Kim, Hyunbae;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.161-168
    • /
    • 2019
  • This study introduces a new topology to decrease the voltage stress experienced by a 13.56 MHz electrical variable capacitor (EVC) circuit with an asymmetrical switch structure applied to the impedance matching circuit of a radio frequency (RF) plasma system. The method adopts a symmetrical switch structure instead of an asymmetrical one in each of the capacitor's leg in the EVC circuit. The proposed topology successfully reduces voltage stress in the EVC circuit due to the symmetrical charging and discharging mode. This topology can also be applied to the impedance matching circuit of a high-power and high-frequency RF etching system. The target features of the proposed circuit topology are investigated via simulation and experiment. Voltage stress on the switch of the EVC circuit is successfully reduced by more than 40%.

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

Robust Vibration Control of Smart Structures via Discrete-Time Fuzzy-Sliding Modes (이산시간 퍼지-슬라이딩모드를 이용한 스마트구조물의 강건진동제어)

  • Choi, Seung-Bok;Kim, Myoung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3560-3572
    • /
    • 1996
  • This paper presents a new discrete-time fuzzy-sliding mode controller for robust vibration control of a smart structure featuring a piezofilm actuator. A governong equation of motion for the smart beam structure is derived and discrete-time codel with mismatched uncertainties such as parameter variations is constructed ina state space. A discrete-time sliding mode control system consisting of an equivalent controller and a discontinuous controller is formulated. In the design of the equivalent part, so called an equivalent controller separation method is adopted to achieve vzster convergence to a sliding surface without extension of a sliding region, in which the system robustness maynot be guaranteed. On the other hand, the discontinuous part is constructed on the basis of both the sliding and the convergence conditions using a time-varying feedback gain. The sliding moide controller is then incorporated with a fuzzy technique to appropriately determine principal control parameters such as a discountinuous feedback gain. Experimental implementation on the forced and random vibraiton controls is undertaken in order to demonstrate superior control performance of the proposed controller.

The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates

  • Farokhian, Ahmad
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.733-742
    • /
    • 2020
  • Vibration analysis in nanocomposite plate with smart layer is studied in this article. The plate is reinforced by carbon nanotubes where the Mori-Tanaka law is utilized for obtaining the effective characteristic of structure assuming agglomeration effects. The nanocomposite plate is located in elastic medium which is simulated by spring element. The motion equations are derived based on first order shear deformation theory and Hamilton's principle. Utilizing Navier method, the frequency of the structure is calculated and the effects of applied voltage, volume percent and agglomeration of Carbon nanotubes, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with applying negative voltage, the frequency of structure is increased. In addition, the agglomeration of carbon nanotubes reduces the frequency of the nanocomposite plate.

Establishment of Cyber Security Countermeasures amenable to the Structure of Power Monitoring & Control Systems (전력계통 제어시스템 구조에 따른 사이버 보안대책 수립)

  • Woo, Pil Sung;Kim, Balho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1577-1586
    • /
    • 2018
  • The emergence of the Smart Grid is an integrated solution for the next generation power system that combines IT technology in the power system to create optimal energy utilization and various services. However, these convergence technologies (power systems and information communications) are not only improving the related technologies but also producing various problems especially exposure to cyber risk. In particular, the intelligent power grid has security vulnerabilities through real-time information sharing among various organically linked systems, and it is more complicated than the cyber risk problem in the existing IT field and is directly connected to national disaster accidents. Therefore, in order to construct and operate a more stable smart grid, this paper analyzes the system of power system control system in Korea, and proposes a cyber security element definition and a countermeasure establishment method of power monitoring & control systems based on security standards of smart grid (No. SPS-SGSF-121-1-1).

A Study on Citizen Participation System based on Design Thinking, Design Science - Smart City case

  • SUH, Eung-Kyo
    • The Journal of Economics, Marketing and Management
    • /
    • v.9 no.2
    • /
    • pp.11-20
    • /
    • 2021
  • Purpose: The importance of creativity has been emphasized in the transition from industrial society to knowledge-based society. Recently, design thinking has attracted great attention as one of the ways to increase the creativity of the organization. From the perspective of solving urban problems through collaboration between technology and citizens, the active participation of citizens is indispensable for realizing smart cities. Research design, data and methodology: From the perspective of solving urban problems through collaboration between technology and citizens, the active participation of citizens is indispensable for realizing smart cities. Results: Therefore, the purpose of this research was to design a citizen-participation type system and contents using a specific space to realize a smart city. This system utilizes the concept of space as a tool to promote innovation activities with the participation of citizens and makes it easy for users of space to participate based on urban problems derived from living labs and the internal structure and user flow line have been designed. Conclusions: It was been also used voice recognition, artificial intelligence, the Internet of Things, and big data as important technologies for experiencing smart cities. The system and content were designed with an emphasis on allowing citizens to directly recognize and experience smart city technology, especially through space-based information visualization and multi-faceted stimulus elements.

Performance Evaluation of Reinforcement Learning Algorithm for Control of Smart TMD (스마트 TMD 제어를 위한 강화학습 알고리즘 성능 검토)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.41-48
    • /
    • 2021
  • A smart tuned mass damper (TMD) is widely studied for seismic response reduction of various structures. Control algorithm is the most important factor for control performance of a smart TMD. This study used a Deep Deterministic Policy Gradient (DDPG) among reinforcement learning techniques to develop a control algorithm for a smart TMD. A magnetorheological (MR) damper was used to make the smart TMD. A single mass model with the smart TMD was employed to make a reinforcement learning environment. Time history analysis simulations of the example structure subject to artificial seismic load were performed in the reinforcement learning process. Critic of policy network and actor of value network for DDPG agent were constructed. The action of DDPG agent was selected as the command voltage sent to the MR damper. Reward for the DDPG action was calculated by using displacement and velocity responses of the main mass. Groundhook control algorithm was used as a comparative control algorithm. After 10,000 episode training of the DDPG agent model with proper hyper-parameters, the semi-active control algorithm for control of seismic responses of the example structure with the smart TMD was developed. The simulation results presented that the developed DDPG model can provide effective control algorithms for smart TMD for reduction of seismic responses.

Design and Implementation of Real Time Device Monitoring and History Management System based on Multiple devices in Smart Factory (스마트팩토리에서 다중장치기반 실시간 장비 모니터링 및 이력관리 시스템 설계 및 구현)

  • Kim, Dong-Hyun;Lee, Jae-min;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.124-133
    • /
    • 2021
  • Smart factory is a future factory that collects, analyzes, and monitors various data in real time by attaching sensors to equipment in the factory. In a smart factory, it is very important to inquire and generate the status and history of equipment in real time, and the emergence of various smart devices enables this to be performed more efficiently. This paper proposes a multi device-based system that can create, search, and delete equipment status and history in real time. The proposed system uses the Android system and the smart glass system at the same time in consideration of the special environment of the factory. The smart glass system uses a QR code for equipment recognition and provides a more efficient work environment by using a voice recognition function. We designed a system structure for real time equipment monitoring based on multi devices, and we show practicality by implementing and Android system, a smart glass system, and a web application server.

Communication Structure for Smart Railway Network (스마트 철도 네트워크를 위한 통신 구조)

  • Kim, Young-dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.197-199
    • /
    • 2021
  • High speed railway system is progressed to SRN(Smart Railway Network) having entirely automation function beyond each componet automations. It is necessity to use mobile communication technology of LTE-R(Long Term Evolution - Railway) and 5G-R(5th Generation - Railway) and information technology of convergence based on AI, Big Data, Deep Learning to construct this smart railway networks. In this paper, a communication structure is suggested for SRN. This suggested communication structure for SRN is composed to include safety operation of high speed train, railway system management and customer services, and also have complexing function of these each functions. Results of this study can be used for SRN construction and opeation, and development of railway communication standards.

  • PDF