• Title/Summary/Keyword: Smart Space

Search Result 1,115, Processing Time 0.024 seconds

The Analysis of RF System and Communication Link for improvement in reliability of Smart UAV Data-Link (Smart-UAV 데이터링크 신뢰성 향상을 위한 RF 시스템 및 통신 링크 분석)

  • Hwang, In-Yong;Yu, Kap-Seon;Kim, Hak-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.66-79
    • /
    • 2005
  • In this paper, we have performed the analysis of RF transceiver system and communication link for the improvement in reliability of Smart-UAV(Unmanned Aerial Vehicles) Data-Link. The system analysis performed using the development specification of the data link and data sheet of using components through the system simulation tool that is Agilent EEsof ADS. Also, the communication link analysis peformed using a variety of propagation models for the smart UAV operation environments. As a result, we have presented problems appeared in the simulation results and development specification. As well as, we have presented about several problems and consideration issue for system design through the communication link analysis.

Design of the Compound Smart Material Pump for Brake System of Small·Medium Size UAV (중소형 무인기 브레이크 시스템용 복합형 지능재료펌프 설계)

  • Lee, Jonghoon;Hwang, Jaihyuk;Yang, Jiyoun;Joo, Yonghwi;Bae, Jaesung;Kwon, Junyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, the design of compound smart materials hydraulic pump that can be applied to a small-medium size UAV having a limited space envelope and weight has been conducted. Compound Smart Material Pump(CSMP) proposed in this paper is composed of a pressurize pump and a flow pump for supplying the high pressure and fluid displacement to overcome the disadvantages of the piezoelectric actuator which has a small strain. Though this compound smart material pump has been designed as small size and lightweight as possible, it can sequentially supply the sufficient large flow rate and pressure required for the brake operation. For the design of CSMP, about 2,700 kg (6,000 lb) class fixed wing manned aircraft was selected. Based on the established requirements, the design of the CSMP have been done by strength, vibration, and fluid flow analysis.

Implementation of Small Automatic Lubrication Device for Automated Processes in Smart Factory (스마트 공장에서 자동화 공정을 위한 소형 자동 윤활 장치 구현)

  • Lee, Yoo-Ri;Kim, Hyeong-Jun;Kim, Man-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.765-771
    • /
    • 2020
  • Automatic lubrication devices are applied in various fields, such as huge machinery, construction machinery or commercial vehicles, to lower maintenance costs and protect the devices. In addition, the automatic lubrication device reduces frequent component failures cause by friction and allows the machine to replace the lubricating oil replenishment work carried out by the manager. However, the automatic lubricating device used in large machinery or commercial vehicles is relatively large, containing a large amount of lubricant in the space to be lubricated. On the other hand, a smart factory, such as a home appliance or cosmetics factory, lacks space to install large automatic lubrication devices, and it is difficult to distribute electricity. Therefore, there is a need for an automatic lubrication device that can be used in various environments that require lubrication. In this paper, a small automatic lubrication device is proposed for smart factories that have changed parts of existing factories, such as electronics factories, to minimize friction arising from mechanical parts, etc. In particular, the structure of lubricating pumps and component parts that are the core of automatic lubrication devices was described so that they could be utilized in various fields. Finally, a test bed environment is established for the proposed automatic lubrication device to evaluate its performance and verify its applicability.

Development and prospect of Smart EMW Absorber for Protection of Electronic Circuits and Devices with Heat Radiating Function (전자회로 및 부품 보호용 방열기능형 스마트 전파 흡수체의 개발과 전망)

  • Kim, Dong Il;Park, Soo Hoon;Joo, Yang Ick
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1040-1046
    • /
    • 2015
  • With the rapid progress of electronics and radio communication technology, human enjoys greater freedom in information communication. However, EMW (Electro-Magnetic Wave) environments have become more complicate and difficult to control. Thus, international organizations, such as the American National Standard Institution (ANSI), Federal Communications Commission (FCC), the Comite Internationale Special des Perturbations Radio Electrique (CISPR), etc, have provided standard for controlling the EM wave environments and for the countermeasure of the electromagnetic compatibility (EMC). In this paper, the status of EMW absorbers and the goal of smart EMW absorber in the future were described. Furthermore, design method of the smart EM wave absorber with heat radiating function was suggested. The designed smart EM wave absorber has the absorption ability of more than 20 dB from 2 GHz to 2.45 GHz band, the optimum aperture (hole) size, the adjacent hole space, and the thickness of which were 6 mm, 9 mm, and 6.5 mm, respectively. Thus, it is respected that these results can be applied as various EMC devices in electronic, communication, and controlling systems.

Experimental Study of Adaptive Sliding Mode Control for Vibration of a Flexible Rectangular Plate

  • Yang, Jingyu;Liu, Zhiqi;Cui, Xuanming;Qu, Shiying;Wang, Chu;Lanwei, Zhou;Chen, Guoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.28-40
    • /
    • 2015
  • This paper aims to address the intelligent active vibration control problem of a flexible rectangular plate vibration involving parameter variation and external disturbance. An adaptive sliding mode (ASM) MIMO control strategy and smart piezoelectric materials are proposed as a solution, where the controller design can deal with problems of an external disturbance and parametric uncertainty in system. Compared with the current 'classical' control design, the proposed ASM MIMO control strategy design has two advantages. First, unlike existing classical control algorithms, where only low intelligence of the vibration control system is achieved, this paper shows that high intelligent of the vibration control system can be realized by the ASM MIMO control strategy and smart piezoelectric materials. Second, the system performance is improved due to two additional terms obtained in the active vibration control system. Detailed design principle and rigorous stability analysis are provided. Finally, experiments and simulations were used to verify the effectiveness of the proposed strategy using a hardware prototype based on NI instruments, a MATLAB/SIMULINK platform, and smart piezoelectric materials.

Assessment of DTVC Operation Efficiency for the Simulation of High Vacuum and Cryogenic Lunar Surface Environment (고진공 및 극저온 달의 지상 환경 재현을 위한 지반열진공챔버 운영 효율성 평가)

  • Jin, Hyunwoo;Chung, Taeil;Lee, Jangguen;Shin, Hyu-Soung;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.125-134
    • /
    • 2022
  • The Global Expansion Roadmap published by the International Space Exploration Coordination Group, which is organized by space agencies around the world, presents future lunar exploration guidance and stresses a lunar habitat program to utilize lunar resources. The Moon attracts attention as an outpost for deep space exploration. Simulating lunar surface environments is required to evaluate the performances of various equipment for future lunar surface missions. In this paper, an experimental study was conducted to simulate high vacuum pressure and cryogenic temperature of the permanent shadow regions in the lunar south pole, which is a promising candidate for landing and outpost construction. The establishment of an efficient dirty thermal vacuum chamber (DTVC) operation process has never been presented. One-dimensional ground cooling tests were conducted with various vacuum pressures with the Korean Lunar Simulant type-1 (KLS-1) in DTVC. The most advantageous vacuum pressure was found to be 30-80 mbar, considering the cooling efficiency and equipment stability. However, peripheral cooling is also required to simulate a cryogenic for not sublimating ice in a high vacuum pressure. In this study, an efficient peripheral cooling operation process was proposed by applying the frost ratio concept.

A Study for Space-based Energy Management System to Minimizing Power Consumption in the Big Data Environments (소비전력 최소화를 위한 빅데이터 환경에서의 공간기반 에너지 관리 시스템에 관한 연구)

  • Lee, Yong-Soo;Heo, Jun;Choi, Yong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.229-235
    • /
    • 2013
  • This paper proposed the method to reduce and manage the amount of using power by using the Self-Learning of inference engine that evolves through learning increasingly smart ways for each spaces with in the Space-Based Energy Management System (SEMS, Space-based Energy Management System) that is defined as smallest unit space with constant size and similar characteristics by using the collectible Big Data from the various information networks and the informations of various sensors from the existing Energy Management System(EMS), mostly including such as the Energy Management Systems for the Factory (FEMS, Factory Energy Management System), the Energy Management Systems for Buildings (BEMS, Building Energy Management System), and Energy Management Systems for Residential (HEMS, Home Energy Management System), that is monitoring and controlling the power of systems through various sensors and administrators by measuring the temperature and illumination.

Information-Based Urban Regeneration for Smart Education Community (스마트 교육 커뮤니티 정보기반 도시재생)

  • Kimm, Woo-Young;Seo, Boong-Kyo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.12
    • /
    • pp.13-20
    • /
    • 2018
  • This research is to analyze the public cases of information facilities in terms of central circulations in multi level volumes such as atrium or court which provide visual intervention between different spaces and physical connections such as bridges. Hunt Library design balances the understood pre-existing needs with the University's emerging needs to create a forward-thinking learning environment. While clearly a contemporary structure within a traditional context of the NCSU campus, the Hunt Library provides a positive platform for influencing its surroundings. Both technical and programmatic innovations are celebrated as part of the learning experience and provide a versatile and stimulating environment for students. Public library as open spaces connecting to an interactive social domain over communities can provide variety of learning environments, or technology based labs. There are many cases of the public information spaces with dynamic networks where participants can play their roles in physical space as well as in the intellectual stimulation. In the research, new public projects provide typologies of information spaces with user oriented media. The research is to address a creative transition between the reading space and the experimental links of the integration of state-of-the-art technology is highly visible in the building's design. The user-friendly browsing system that replaces the traditional browsing with the virtual shelves classified and archived by their form, is to reduce the storage space of the public library and it is to allow more space for collaborative learning. In addition to the intelligent robot of information storages, innovative features is the large-scale visualization space that supports team experiments to carry out collaborative online works and therefore the public library's various programs is to provide visitors with more efficient participatory environment.

A Study on the Spatial Structure Analysis of history museum using the Complex System (Complex system 이론에 따른 역사기념관 공간구성체계에 대한 연구)

  • Lee, Seung Yong;Park, Ji Hun
    • Smart Media Journal
    • /
    • v.11 no.7
    • /
    • pp.85-93
    • /
    • 2022
  • Currently, Korea is achieving cultural, economic, and social growth as a member of the international community along with its social growth. In the 2000s, local communities and local governments made multidimensional efforts with historical and cultural interests. And as part of that, historical museums were built or expanded to increase the quantity in anticipation of citizens' satisfaction and attracting visitors. However, the qualitative effect of the exhibition space is not achieved. Therefore, in this study, the analysis according to the complex system theory on the interrelationship between exhibition planning, space, and spectators was carried out based on the case of domestic historical museums, and future exhibition space planning or movement lines according to the mutual relationship between the exhibition space and the spectators were conducted. The purpose of this study is to conduct research on specific visualization and data derivation regarding spatial density and spatial perception information.

Alignment of Schwarzchild-Chang Off-axis Telescope with a Shack-Hartmann Wavefront Sensor and Sensitivity Table Method

  • Lee, Sunwoo;Park, Woojin;Kim, Yunjong;Kim, Sanghyuk;Chang, Seunghyuk;Jeong, Byeongjoon;Kim, Geon Hee;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.79.1-79.1
    • /
    • 2019
  • The Schwarzchild-Chang telescope is a confocal off-axis two mirror telescope with D = 50 mm, F = 100 mm and FOV = 8 ° × 8 °. Unlike common off-axis telescopes, the mirrors of the Schwarzchild-Chang telescope share their focal points to remove the linear astigmatism. In this poster, we show the alignment process of the Schwarzchild-Chang telescope with wavefront measurement and the sensitivity table method. Wavefront is measured using the Shack-Hartmann sensor, and Zernike polynomials are obtained from measured wavefront. Sensitivity table method is to calculate alignment errors from the Zernike coefficients. As a result, we evaluate tilt, decenter, and despace of each mirror of linear astigmatism-free con-focal off-axis system.

  • PDF