Browse > Article
http://dx.doi.org/10.7843/kgs.2022.38.12.125

Assessment of DTVC Operation Efficiency for the Simulation of High Vacuum and Cryogenic Lunar Surface Environment  

Jin, Hyunwoo (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
Chung, Taeil (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
Lee, Jangguen (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
Shin, Hyu-Soung (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
Ryu, Byung Hyun (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
Publication Information
Journal of the Korean Geotechnical Society / v.38, no.12, 2022 , pp. 125-134 More about this Journal
Abstract
The Global Expansion Roadmap published by the International Space Exploration Coordination Group, which is organized by space agencies around the world, presents future lunar exploration guidance and stresses a lunar habitat program to utilize lunar resources. The Moon attracts attention as an outpost for deep space exploration. Simulating lunar surface environments is required to evaluate the performances of various equipment for future lunar surface missions. In this paper, an experimental study was conducted to simulate high vacuum pressure and cryogenic temperature of the permanent shadow regions in the lunar south pole, which is a promising candidate for landing and outpost construction. The establishment of an efficient dirty thermal vacuum chamber (DTVC) operation process has never been presented. One-dimensional ground cooling tests were conducted with various vacuum pressures with the Korean Lunar Simulant type-1 (KLS-1) in DTVC. The most advantageous vacuum pressure was found to be 30-80 mbar, considering the cooling efficiency and equipment stability. However, peripheral cooling is also required to simulate a cryogenic for not sublimating ice in a high vacuum pressure. In this study, an efficient peripheral cooling operation process was proposed by applying the frost ratio concept.
Keywords
Cryogenic temperature; DTVC operation efficiency; Frost ratio; High vacuum pressure; Lunar surface;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 David, K., Angel, A.M., Jared, A., Jonathan, B., Cary, B., Dallas, B., Brad, B., Vanessa, C., Justin, C., Blair, D., Chris, D., Barry, F., Jonathan, G., Koki, H., Laura, K., Jim, K., Bernard, K., Philip, M., Laura, M., Phillip, M., Clive, N., Erica, O., Gordon, R., Jim, S., Brandon, S., George, S., Paul, S., Mark, S., Kris, Z., and Guangdong, Z. (2019), "Commercial Lunar Propellant Architecture: A Collaborative Study of Lunar Propellant Production", REACH, Vol.13, pp. 100026-1-77. 
2 Go, G.H., Lee, J., Chung, T., Ryu, B.H., Jin, H., Zhuang, L., Shin, H.S., Kim, J.H. and Yun, T.S. (2021), "Controlling Soil Disturbance of a Lunar Regolith Simulant Bed during Depressurization in a Vacuum Chamber", Sci. Rep., Vol.11, No.1878. 
3 ISECG (2018), "The Global Exploration Roadmap", International Space Exploration Coordination Group (ISECG), Report, ESA (European Space Agency), Europe. 
4 ISECG (2020), "Global Exploration Roadmap - Supplement", International Space Exploration Coordination Group (ISECG), Report, ESA (European Space Agency), Europe. 
5 ISECG (2022), "Global Exploration Roadmap - Supplement", International Space Exploration Coordination Group (ISECG), Report, ESA (European Space Agency), Europe. 
6 Jin, H., Kim, Y., Ryu, B.H., and Lee, J. (2020), "Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1", J. Korean Geotech. Soc., Vol.36, No.8, pp.17-25.    DOI
7 Jin, H., Lee, J., Ryu, B.H., Shin, H.S., and Chung. T. (2021), "Vacuum Pressure Effect on Thermal Conductivity of KLS-1", J. Korean Geotech. Soc., Vol.37, No.8, pp.51-58.    DOI
8 Jin, H., Ryu, B.H., Kang, J.M., and Lee, J. (2021), "Engineering Approach to Determination of the Segregation Potential by the Upward-step-freezing testing method", Cold Reg. Sci. Tech., Vol. 191, No.103361. 
9 Jin, H., Ryu, B.H., and Lee, J. (2022), "Assessment of the Effect of Fines Content on Frost Susceptibility via Simple Frost Heave testing and SP determination", Geomech. Eng., Vol.30, No.4, pp. 393-399. 
10 Julie, K. and Diane, L. (2013), "Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber", 51th Aerosp. Sci. Conf., Grapevine, TX, USA. 
11 Julie, K. (2014), "Lunar Polar Environmental Testing: Regolith Simulant Conditioning", 7th Symp. Space Resour. Util., National Harbor, MD, USA. 
12 Langseth, M.G., Keihm, S.J., and Peters, K. (1976), "Revised Lunar Heat-flow Values", Proc. Lunar Sci. Conf., 7th, USA, pp.3143-3171. 
13 Nozette, S., Spudis, P.D., Robinson, M.S., Bussey, D.B.J., Lichtenberg, C., and Bonner, R. (2001), "Integration of Lunar Polar Remotesensing Data Sets: Evidence for Ice at the Lunar South Pole", J. Geophys. Res.-Planet, Vol.106, No.E10, pp.23253-23266.    DOI
14 Li, S., Lucey, P.G., Milliken, R.E., Hayne, P.O., Fisher, E., Williams, J.P., Hurley, D.M., and Elphic, R.C. (2018), "Direct Evidence of Surface Exposed Water Ice in the Lunar Polar Regions", Proc. Nat. Acad. Sci., USA. 
15 Nagihara, S., Hedlund, M., Zacny, K., and Taylor, P.T. (2014), "Improved Data Reduction Algorithm for the Needle Probe Method Applied to In-situ Thermal Conductivity Measurements of Lunar and Planetary Regoliths", Planet. Space Sci., Vol.92, pp.49-56.    DOI
16 Nozette, S., Lichtenberg, C.L., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M., and Shoemaker, E.M. (1996), "The Clementine Bistatic Radar Experiment", Sci., Vol.274, No.5292, pp.1495-1498.    DOI
17 Sakatani, N., Ogawa, K., Iijima, Y., Arakawa, M., Honda, R., and Tanaka, S. (2017), "Thermal Conductivity Model for Powdered Materials under Vacuum based on Experimental Studies", AIP Adv., Vol.7, pp.015310-1-23. 
18 Sakatani, N., Ogawa, K., Arakawa, M., and Tanaka, S. (2018), "Thermal Conductivity of Lunar Regolith Simulant JSC-1A under Vacuum", ICARUS, Vol.309, pp.13-24.    DOI
19 Selker, J. and Or, D. (2021), "Heat Flow and Thermal Effects in Soils. In Soil Hydrology and Biophysics", Oregon State University, Corvallis, OR, USA. 
20 Wasilewski, T.G., Barcinski, T., and Barchewka, M. (2021), "Experimental Investigations of Thermal Properties of Icy Lunar Regolith and Their Influence on Phase Change Interface Movement", Planet. Space. Sci., Vol.200, pp.105197-1-19. 
21 Christian, S., Lukas, W., and Thomas, R. (2018), "Sustainable Challenges on the Moon", Curr. Opin. Green Sust., Vol.9, pp.8-12.    DOI
22 Weiren, W., Chunlai, L., Wei, Z., Hongbo, Z., Jianjun, L., Weibin, W., Yan, S., Xin, R., Jun, Y., Dengyun, Y., Guangliang, D., Chi, W., Zezhou, S., Enhai, L., Jianfeng, Y., and Ziyuan, O. (2019), "Lunar Farside to be Explored by Chang'e-4", Nat. Geosci., Vol.12, pp.222-223.    DOI
23 Wexler, A. (1977), "Vapor Pressure Formulation for Ice", J. Res., Vol.81A. No.1, pp.5-20.
24 Brent, S. (2019), "Principles for a Practical Moon base", Acta Astronaut., Vol.160, pp.116-124.    DOI
25 Chung, T., Lim, J.Y., Kang, S., Yoo, Y., and Shin, H.S. (2018), "Vacuum Diagnosis and Testing of a Dirty Thermal Vacuum Chamber", Appl. Sci. Converg. Technol., Vol.27, No.6, pp.120-125.    DOI
26 Chung, T., Ahn, H., Yoo, Y., and Shin, H.S. (2019), "An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust behavior for Lunar Surface Environment Simulation", KSCE J. Civ. Eng., Vol.39, No.2, pp.51-58. 
27 Chung, T., Kim, Y.J., Ryu, B.H., and Shin, H.S. (2020), "A Study on Lunar Soil Simulant Pretreatment for Effective Simulation of Lunar Surface Environment", KSCE J. Civ. Eng., Vol.40, No.1, pp.51-58. 
28 Cremers, C.J. and Birkebak, R.C. (1971), "Thermal Conductivity of Fines from Apollo 12", Proc. Lunar Sci. Conf., 2nd, USA, Vol. 3, pp.2311-2315. 
29 Cremers, C.J. (1972), "Thermal Conductivity of Apollo 14", Proc. Lunar Sci. Conf., 3rd, USA, Vol.3, pp.2611-2617. 
30 Cremers, C.J. (1975), "Thermophysical Properties of Apollo 14 Fines", J. Geophys. Res., Vol.80, No.32, pp.4466-4470.    DOI