• Title/Summary/Keyword: Smart Security Solution

Search Result 107, Processing Time 0.021 seconds

Technology and Policy for Blockchain-based Spectrum Sharing (블록체인 기반의 전파 공유 기술과 전파 정책)

  • Shin, Na Yeon;Nam, Ji-Hyun;Choi, Ye Jin;Lee, Il-Gu
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.13-21
    • /
    • 2019
  • The restricted network or the unbalanced distribution of spectrum is causing the problems of lack of spectrum resources and deterioration of the service quality. In addition, the existing centralized radio sharing method has not been a fundamental solution for radio sharing and is inefficient in terms of cost, convenience, and security. In this paper, we propose a blockchain-based spectrum sharing as a low-cost, trustworthy, high-efficiency platform that can distribute and share spectrum resources, and propose policies to realize this. In the spectrum sharing platform, spectrum information about Wi-Fi AP and LTE mobile hotspot is registered in the blockchain, and spectrum sharers and users can conclude peer-to-peer spectrum sharing contract quickly and efficiently through smart contract. The pay for the shared spectrum resources and reward for spectrum quality management open platform ecosystem to activate the circulation-sharing and it can provide a convenient and efficient public wireless infrastructure.

Design and Implementation of Economical Smart Wall Switch with IEEE 802.11b/g/n

  • Myeong-Chul Park;Hyoun-Chul Choi;Cha-Hun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.103-109
    • /
    • 2023
  • In this paper, we propose a smart wall switch based on IEEE 802.11b/g/n standard 2.4GHz band communication. As the 4th industrial era evolves, smart home solution development is actively underway, and application cases for smart wall switches are increasing. Most of the Chinese products that preoccupy the market through price competitiveness use Bluetooth and Zigbee communication switches. However, while ZigBee communication is low power, communication speed is slower than Bluetooth and network configuration through a separate hub is additionally required. The Bluetooth method has problems in that the communication range and speed are lower than Wi-Fi communication, the communication standby time is relatively long, and security is weak. In this study, an IEEE 802.11b/g/n smart wall switch applied with Wi-Fi communication technology was developed. In addition, through the two-wire structure, it is designed so that no additional cost is incurred through the construction of a separate neutral line in the building. The result of the study is more than 30% cheaper than the existing wall switch, so it is judged that it will be able to preoccupy the market not only in terms of technological competitiveness but also price competitiveness.

Analysis of the Vulnerability of the IoT by the Scenario (시나리오 분석을 통한 사물인터넷(IoT)의 취약성 분석)

  • Hong, Sunghyuck;Sin, Hyeon-Jun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.1-7
    • /
    • 2017
  • As the network environment develops and speeds up, a lot of smart devices is developed, and a high-speed smart society can be realized while allowing people to interact with objects. As the number of things Internet has surged, a wide range of new security risks and problems have emerged for devices, platforms and operating systems, communications, and connected systems. Due to the physical characteristics of IoT devices, they are smaller in size than conventional systems, and operate with low power, low cost, and relatively low specifications. Therefore, it is difficult to apply the existing security solution used in the existing system. In addition, IoT devices are connected to the network at all times, it is important to ensure that personal privacy exposure, such as eavesdropping, data tampering, privacy breach, information leakage, unauthorized access, Significant security issues can arise, including confidentiality and threats to facilities. In this paper, we investigate cases of security threats and cases of network of IoT, analyze vulnerabilities, and suggest ways to minimize property damage by Internet of things.

Plagiarism and Copyright Infringement Status and Countermeasures of Undergraduate Students in Smart Environments (스마트 환경에서 대학생들의 표절과 저작권 침해 실태 및 대응 방안)

  • Kim, Tae-Hee;Kang, Moon-Seol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2180-2188
    • /
    • 2015
  • Plagiarism in which people use other people's works partially or in entirety as if they are their own and infringement on copyrights that frequently occur in various forms under smart device environment are becoming one of the crucial problems that need to be solved for Korea to become an advanced nation. This paper investigates and analyzes how college students, the heaviest user of smart devices under various smart device environment, are committing plagiarism and copyright infringement and suggest a basic education plan to prevent plagiarism and copyright infringement. College students have a very low awareness of plagiarism and copyrights and the level of violation associated with plagiarism and copyrights infringement they commit from elementary school to college were found to be at a serious level. It was demonstrated that the solution suggested in this paper to solve these problems would be effective in enhancing the awareness of the bad effect of plagiarism and copyrights infringement along with their side effects.

Implement and Experiment of Efficient Off-Chain (단방향 해시 함수를 활용한 효율적인 Off-chain Payment Channel 구현 및 실험)

  • Kim, Sun Hyoung;Jeong, Jae Yeol;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1413-1424
    • /
    • 2019
  • Cryptocurrency has limitations to be used as an actual payment method due to the scalability problem of the blockchain consensus protocol, and various off-chain solutions to solve these limitations are being studied. In this paper, we design an efficient off-chain payment channel using one-way hash function and implement the designed payment channel using Ethereum smart contract. In addition, the experiment was conducted to measure and analyze execution time and cost for each method by deploying it in the same environment as the previously implemented plasma MVP. As a result, compared with plasma MVP, the proposed solution was able to reduce the total cumulative time by about 34% and reduce the overall execution cost by about 41%.

A Study on the Security Enhancement for Personal Healthcare Information of CloudHIS (CloudHIS의 개인 의료정보를 위한 보안강화에 관한 연구)

  • Cho, Young-Sung;Chung, Ji-Moon;Na, Won-Shik
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.27-32
    • /
    • 2019
  • Along with the growth of u-Healthcare, we propose a security enhancement based on network separation for CloudHIS with for handling healthcare information to cope with cyber attack. To protect against all security threats and to establish clear data security policies, we apply desktop computing servers to cloud computing services for CloudHIS. Use two PCs with a hypervisor architecture to apply physical network isolation and select the network using KVM switched controller. The other is a logical network separation using one PC with two OSs, but the network is divided through virtualization. Physical network separation is the physical connection of a PC to each network to block the access path from both the Internet and the business network. The proposed system is an independent desktop used to access an intranet or the Internet through server virtualization technology on a user's physical desktop computer. We can implement an adaptive solution to prevent hacking by configuring the CloudHIS, a cloud system that handles medical hospital information, through network separation for handling security enhancement.

Homomorphic Encryption as End-to-End Solution for Smart Devices

  • Shanthala, PT;Annapurna, D;Nittala, Sravanthi;Bhat, Arpitha S;Aishwarya, Aishwarya
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.57-62
    • /
    • 2022
  • The recent past has seen a tremendous amount of advancement in the field of Internet of Things (IoT), allowing the influx of a variety of devices into the market. IoT devices are present in almost every aspect of our daily lives. While this increase in usage has many advantages, it also comes with many problems, including and not limited to, the problem of security. There is a need for better measures to be put in place to ensure that the users' data is protected. In particular, fitness trackers used by a vast number of people, transmit important data regarding the health and location of the user. This data is transmitted from the fitness device to the phone and from the phone onto a cloud server. The transmission from device to phone is done over Bluetooth and the latest version of Bluetooth Light Energy (BLE) is fairly advanced in terms of security, it is susceptible to attacks such as Man-in-the-Middle attack and Denial of Service attack. Additionally, the data must be stored in an encrypted form on the cloud server; however, this proves to be a problem when the data must be decrypted to use for running computations. In order to ensure protection of data, measures such as end-to-end encryption may be used. Homomorphic encryption is a class of encryption schemes that allow computations on encrypted data. This paper explores the application of homomorphic encryption for fitness trackers.

A Study on Social Security Platform and Non-face-to-face Care (사회보장플랫폼과 비대면 돌봄에 관한 고찰)

  • Jang, Bong-Seok;Kim, Young-mun;Kim, Yun-Duck
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.329-341
    • /
    • 2020
  • As COVID-19 pandemic sweeps across the world, more than 45 million confirmed cases and over 1,000,000 deaths have occurred till now, and this situation is expected to continue for some time. In particular, more than half of the infections in European countries such as Italy and Spain occurred in nursing homes, and it is reported that over 4,000 people died in nursing homes for older adults in the United States. Therefore, the issues that need to be addressed after the COVID-19 crisis include finding a fundamental solution to group care and shifting to family-centered care. More specifically, it is expected that there will be ever more lively discussion on establishing and expanding hyper-technology based community care, that is, family-centered care integrated with ICT and other Industry 4.0 technologies. This poses a challenge of how to combine social security and social welfare with Industry 4.0 in concrete ways that go beyond the abstract suggestions made in the past. A case in point is the proposal involving smart welfare cities. Given this background, the present paper examined the concept, scope, and content of non-face-to-face care in the context of previous literature on the function and scope of the social security platform, and the concept and expandability of the smart welfare city. Implementing a smart city to realize the kind of social security and welfare that our society seeks to provide has significant bearing on the implementation of community care or aging in place. One limitation of this paper, however, is that it does not address concrete measures for implementing non-face-to-face care from the policy and legal/institutional perspectives, and further studies are needed to explore such measures in the future. It is expected that the findings of this paper will provide the future course and vision not only for the smart welfare city but also for the social security and welfare system in administrative, practical, and legislative aspects, and ultimately contribute to improving the quality of human life.

A Parallel Approach to Navigation in Cities using Reconfigurable Mesh

  • El-Boghdadi, Hatem M.;Noor, Fazal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • The subject of navigation has drawn a large interest in the last few years. Navigation problem (or path planning) finds the path between two points, source location and destination location. In smart cities, solving navigation problem is essential to all residents and visitors of such cities to guide them to move easily between locations. Also, the navigation problem is very important in case of moving robots that move around the city or part of it to get some certain tasks done such as delivering packages, delivering food, etc. In either case, solution to the navigation is essential. The core to navigation systems is the navigation algorithms they employ. Navigation algorithms can be classified into navigation algorithms that depend on maps and navigation without the use of maps. The map contains all available routes and its directions. In this proposal, we consider the first class. In this paper, we are interested in getting path planning solutions very fast. In doing so, we employ a parallel platform, Reconfigurable mesh (R-Mesh), to compute the path from source location to destination location. R-Mesh is a parallel platform that has very fast solutions to many problems and can be deployed in moving vehicles and moving robots. This paper presents two algorithms for path planning. The first assumes maps with linear streets. The second considers maps with branching streets. In both algorithms, the quality of the path is evaluated in terms of the length of the path and the number of turns in the path.

QNFT: A Post-Quantum Non-fungible Tokens for Secure Metaverse Environment

  • Abir El Azzaoui;JaeSoo Kim
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.273-283
    • /
    • 2024
  • The digital domain has witnessed unprecedented growth, reshaping the way we interact, work, and even perceive reality. The internet has evolved into a vast ecosystem of interconnected virtual worlds, giving birth to the concept of the Metaverse. The Metaverse, often envisioned as a collective virtual shared space, is created by the convergence of virtually enhanced physical reality and interactive digital spaces. Within this Metaverse space, the concept of ownership, identity, and authenticity takes on new dimensions, necessitating innovative solutions to safeguard individual rights. The digital transformation through Metaverse has also brought forth challenges, especially in copyright protection. As the lines between the virtual and physical blur, the traditional notions of ownership and rights are being tested. The Metaverse, with its multitude of user-generated content, poses unique challenges. The primary objective of this research is multifaceted. Firstly, there's a pressing need to understand the strategies employed by non-fungible token (NFT) marketplaces within the Metaverse to strengthen security and prevent copyright violations. As these platforms become centers for digital transactions, ensuring the authenticity and security of each trade becomes paramount. Secondly, the study aims to delve deep into the foundational technologies underpinning NFTs, from the workings of blockchain to the mechanics of smart contracts, to understand how they collectively ensure copyright protection. Thus, in this paper, we propose a quantum based NFT solution that can secure Metaverse and copyright contents in an advanced manner.