• Title/Summary/Keyword: Smart Grid1

Search Result 228, Processing Time 0.033 seconds

Development of Multi-purpose Smart Sensor Using Presence Sensor (재실 감지 센서를 이용한 다용도 스마트 센서 개발)

  • Cha, Joo-Heon;Yong, Heong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • This paper introduces a multi-purpose smart fusion sensor. Normally, this type of sensor can contribute to energy savings specifically related to lighting and heating/air conditioning systems by detecting individuals in an office building. If a fire occurs, the sensor can provide information regarding the presence and location of residents in the building to a management center. The system consists of four sensors: a thermopile sensor for detecting heat energy, an ultrasonic sensor for measuring the distance of objects from the sensor, a fire detection sensor, and a passive infrared sensor for detecting temperature change. The system has a wireless communication module to provide the management center with control information for lighting and heating/air conditioning systems. We have also demonstrated the usefulness of the proposed system by applying it to a real environment.

Performance of Equalizer Schemes in Power Line Communication Systems for Automatic Metering Reading (자동 원격검침을 위한 전력선 통신 시스템에서의 등화 기법 연구)

  • Kim, Yo-cheol;Bae, Jung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • In this paper, we propose and analyze the equalizer schemes, zero-forcing (ZF) and minimum mean square error (MMSE) in power line communication (PLC) system for automatic meter reading (AMR). For efficient implementation of AMR system with PLC, effects of impulsive noise and multipath channel should be mitigated. To overcome these effects, the above equalizer schemes are employed. System performance is evaluated in term of bit error rate. From simulation results, it is confirmed that the equalizer can significantly improve bit error rate (BER) performance in PLC system, and MMSE equalizer provides better performance than ZF scheme. The results of this paper can be applied to AMR system as well as various smart grid services using PLC.

Study of the Design of Data Acquisition and Analysis Systems for Multi-purpose Regional Energy Systems

  • Lee, Han-Sang;Yoon, Dong-Hee;Jang, Gil-Soo;Park, Jong-Keun;Park, Goon-Cherl
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • Recently, the smart grid has become a hot issue and interest in related power sources have increased accordingly. The implementation of a smart grid can enable many generation resources to be linked to the power system, including small-scale reactors for the purpose of co-generation. Research on small-scale reactors is being carried out all over the world. Similarly, Korea is also conducting research on multi-purpose regional energy systems using nuclear energy. This paper proposes a real-time data acquisition and analysis system for small-scale reactors, and is known as the REX-10 (Regional Energy rX 10 MVA). This analysis requires real-time simulations for the power system since it needs data communication with a remote REX-10. A RTDS (Real Time Digital Simulator) has been used for the simulation, and a SCADA/HMI system interfaced with the RTDS is proposed for the purpose of monitoring and control of the regional energy system.

Modelling a Stand-Alone Inverter and Comparing the Power Quality of the National Grid with Off-Grid System

  • Algaddafi, Ali;Brown, Neil;Rupert, Gammon;Al-Shahrani, Jubran
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Developments in power electronics have enabled the widespread application of Pulse Width Modulation (PWM) inverters, notably for connecting renewable systems to the grid. This study demonstrates that a high-quality power can be achieved using a stand-alone inverter, whereby the comparison between the power quality of the stand-alone inverter with battery storage (off-grid) and the power quality of the utility network is presented. Multi-loop control techniques for a single phase stand-alone inverter are used. A capacitor current control is used to give active damping and enhance the transient and steady state inverter performance. A capacitor current control is cheaper than the inductor current control, where a small current sensing resistor is used. The output voltage control is used to improve the system performance and also control the output voltage. The inner control loop uses a proportional gain current controller and the outer loop is implemented using internal model control proportional-integral-derivative to ensure stability. The optimal controls are achieved by using the Sisotool tool in MATLAB/Simulink. The outcome of the control scheme of the numerical model of the stand-alone inverter has a smooth and good dynamic performance, but also a strong robustness to load variations. The numerical model of the stand-alone inverter and its power quality are presented, and the power quality is shown to meet the IEEE 519-2014. Furthermore, the power quality of the off-grid system is measured experimentally and compared with the grid power, showing power quality of off-grid system to be better than that of the utility network.

An Optimization Method for Hologram Generation on Multiple GPU-based Parallel Processing (다중 GPU기반 홀로그램 생성을 위한 병렬처리 성능 최적화 기법)

  • Kook, Joongjin
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2019
  • Since the computational complexity for hologram generation increases exponentially with respect to the size of the point cloud, parallel processing using CUDA and/or OpenCL library based on multiple GPUs has recently become popular. The CUDA kernel for parallelization needs to consist of threads, blocks, and grids properly in accordance with the number of cores and the memory size in the GPU. In addition, in case of multiple GPU environments, the distribution in grid-by-grid, in block-by-block, or in thread-by-thread is needed according to the number of GPUs. In order to evaluate the performance of CGH generation, we compared the computational speed in CPU, in single GPU, and in multi-GPU environments by gradually increasing the number of points in a point cloud from 10 to 1,000,000. We also present a memory structure design and a calculation method required in the CUDA-based parallel processing to accelerate the CGH (Computer Generated Hologram) generation operation in multiple GPU environments.

An Inherent Zero-Voltage and Zero-Current-Switching Full-Bridge Converter with No Additional Auxiliary Circuits

  • Wang, Jianhua;Ji, Baojian;Wang, Hongbo;Chen, Naifu;You, Jun
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.610-620
    • /
    • 2015
  • An inherent zero-voltage and zero-current-switching phase-shifted full-bridge converter with reverse-blocking insulated-gate bipolar transistor (IGBT) or non-punch-through IGBT is proposed in this paper. This converter not only ensures that the switches in the lagging leg works at zero-current switching, but also minimizes circulating conduction loss without any additional auxiliary circuits. A 1.2 kW hardware prototype is designed, fabricated, and tested to verify the proposed topology. The control loop design procedures with small-signal models are also presented. A simple, low-cost, and robust democratic current-sharing circuit is also introduced and verified in this study. The proposed converter is a suitable alternative for compact, cost-effective applications with high-voltage input.

Applicability Comparison of Transmission Line Parameter Extraction Methods for Busbar Distribution Systems

  • Hasirci, Zeynep;Cavdar, Ismail Hakki;Ozturk, Mehmet
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.586-593
    • /
    • 2017
  • Modeling busbar distribution system as a transmission line is an important subject of power line communication in the smart grid concept. This requires extraction of busbar RLGC parameters, accurately. In this study, a comparison is made between conventional and modified method for the aspect of optimum RLGC parameters extraction in the 1 MHz to 50 MHz frequency band. The usefulness of these methods is shown both in time and frequency-domain analysis. The frequency-domain analyzes show that the inherent power of modified method can eliminate the errors especially due to the discontinuities arise in conventional method. This makes the modeling approach of modified method more advantageous for the busbars due to its robustness against disturbances in the S-parameters measurements which cannot be eliminated with the calibration procedure. On the other hand, time-domain simulations show that the transmission line representation of the modified method is closer to physical reality by handling causality issues.

M2M Gateway based on CoAP in SG Environment (SG 환경에서 CoAP 기반 M2M 게이트웨이)

  • Shin, In-Jae;Park, Jee-Won;Lee, Sang-Hoon;Song, Byung-Kwen
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.47-48
    • /
    • 2015
  • As the power system develops rapidly into a smarter and more flexible state, so must the communication technologies that support it. Machine to machine (M2M) communication in Smart Grid environment has been discussed in European Telecommunications Standards Institute (ETSI). The power system is not easily replaceable, due to system replacement cost. The M2M gateway is required in other to improve interoperability in M2M environment. The Distributed Network Protocol 3.0 (DNP3.0) is the most important standard in the SCADA systems for the power. It has been used for device data collection/control in Substation Systems, Distribution Automation System. If the DNP3.0 data model is combined with a set of contemporary web protocols, it can result in a major shift. We selected Constrained Application Protocol (CoAP) based on RESTful as M2M protocol. It is a specialized web transfer protocol for use with constrained nodes and constrained networks. We have used the OPNET Modeler 17.1 in order to verity the SOAP versus CoAP. In this paper, we propose the CoAP-based M2M Gateway to Distribution Automation system using DNP3.0 in Smart Grid Environment.

  • PDF

Smart meter data transmission device and power IT system using LTE and IoT technologies (LTE와 IoT 기술을 이용한 스마트미터 데이터 전송장치와 전력 IT 시스템)

  • Kang, Ki-Beom;Kim, Hong-Su;Jwa, Jeong-Woo;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.117-124
    • /
    • 2017
  • A Smart Grid is a system that can efficiently use energy by exchanging real-time information in both directions between a consumer and a power supplier using ICT technology on an existing power network. DR(Demand response) is an arrangement in which electricity users can sell the electricity they save to the electricity market when the price of electricity is high or the power system is crisis. In this study, we developed a power meter data transmission device and power IT system that measure the demand information in real-time using a smart meter and transmit it to a cloud server. The power meter data transmission device developed in this study uses alight sensor connected to a Raspberry Pi 3 to measure the number of blinking lamps on the KEPCO meter per unit of power, in order to provide reliable data without any measurement errors with respect to the KEPCO power data. The power measurement data transmission device uses the standard communication protocol, OpenADR 2.0b. The measured data is transmitted to the power IT system, which consists of the VEN, VTN, and calculation program, via the LTE WiFi communication network and stored in its MySQL DB. The developed power measurement data transmission device issues a power supply instruction and performs a peak reduction DR when a power system crisis occurs. The developed power meter data transmission device has the advantage of allowing the user to adjust it every 1 minute, where as the existing smart metering time is fixed at once every 15 minutes.

A Study on the Point-Mass Filter for Nonlinear State-Space Models (비선형 상태공간 모델을 위한 Point-Mass Filter 연구)

  • Yeongkwon Choe
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.57-62
    • /
    • 2023
  • In this review, we introduce the non-parametric Bayesian filtering algorithm known as the point-mass filter (PMF) and discuss recent studies related to it. PMF realizes Bayesian filtering by placing a deterministic grid on the state space and calculating the probability density at each grid point. PMF is known for its robustness and high accuracy compared to other nonparametric Bayesian filtering algorithms due to its uniform sampling. However, a drawback of PMF is its inherently high computational complexity in the prediction phase. In this review, we aim to understand the principles of the PMF algorithm and the reasons for the high computational complexity, and summarize recent research efforts to overcome this challenge. We hope that this review contributes to encouraging the consideration of PMF applications for various systems.