• Title/Summary/Keyword: Small-scale experiment

Search Result 276, Processing Time 0.028 seconds

Development of Power Flow Boundary Element Method for 3-dimensional Multi-domain Noise Analysis (3차원 다영역 공간의 소음해석을 위한 파워흐름경계요소법 개발)

  • Kim, Jong-Do;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.967-974
    • /
    • 2011
  • The direct and indirect PFBEM(power flow boundary element method) for the treatment of the 3 dimensional multi-domain problems are proposed to predict the acoustic energy density in medium to high frequency ranges. In the proposed method, the equation is derived in a matrix form by considering coupled relationships of the power flow at the interface of given domains. The proposed method can successfully obtain the analytical solutions for the problems of coupled cubes and the small-scale reverberant chamber. Then the experiment is carried out to obtain STL(sound transmission loss) by using small-scale reverberant chamber and the results are compared with analysis results.

Lateral Vibration Analysis of a Small Scale Railway Vehicle Model (축소형 차량의 횡진동 해석)

  • Lee Seung-Il;Son Gun-Ho;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.417-422
    • /
    • 2004
  • The vibration of a running vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a small scale railway vehicle model. Also, the effects on the car body, bogie and wheelset were examined for the weight and the stiffness of the first and second suspension. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension increase. And the lateral vibration of the bogie increases as the mass ratio between car body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

  • PDF

Experimental Study on a Gabion Wall Reinforced by a Relatively Short Reinforcement (짧은 보강재가 부착된 가비온 옹벽의 모형실험)

  • Kim, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • The Gabion wall have been developed on the basis of experimental works and the method is actively used in the actual site. In this study, a relatively small-scale experiment was carried out to figure out the failure behavior of a Gabion wall reinforced by a relatively short wire net to enlarge the axial tensile resistance which is important factor in the stability. The horizontal and vertical displacement of Gabion wall have been acquired and analyzed. Furthermore the results are compared with the test results for a non-reinforced Gabion wall that is performed at the same condition.

  • PDF

ROSA/LSTF test and RELAP5 code analyses on PWR 1% vessel upper head small-break LOCA with accident management measure based on core exit temperature

  • Takeda, Takeshi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1412-1420
    • /
    • 2018
  • An experiment was performed using the large-scale test facility (LSTF), which simulated a 1% vessel upper head small-break loss-of-coolant accident with an accident management (AM) measure under an assumption of total-failure of high-pressure injection (HPI) system in a pressurized water reactor (PWR). In the LSTF test, liquid level in the upper head affected break flow rate. Coolant was manually injected from the HPI system into cold legs as the AM measure when the maximum core exit temperature reached 623 K. The cladding surface temperature largely increased due to late and slow response of the core exit thermocouples. The AM measure was confirmed to be effective for the core cooling. The RELAP5/MOD3.3 code indicated insufficient prediction of primary coolant distribution. The author conducted uncertainty analysis for the LSTF test employing created phenomena identification and ranking table for each component. The author clarified that peak cladding temperature was largely dependent on the combination of multiple uncertain parameters within the defined uncertain ranges.

Investigation of cause and magnitude of scale effect occurring in model experiments of fishing nets (그물어구의 모형 실험시에 발생하는 축척비 영향의 원인 및 크기 조사)

  • Kim, Dae-An
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In order to investigate the cause and magnitude of scale effect occurring in the model experiments of fishing nets, five pairs of Nylon pyramid nets and one pair of PE ones in which all the two nets paired were equal each other in the factors determining their flow resistance, i. e., the ratio d/l of diameter d to length l of bars, the angle f between two adjacent bars, the attack angle q of nettings to the water flow, and the wall area S of nets, and different in the values of d and l were prepared. Then, the nets were attached to the circular steel frame alternately and their flow resistances with shapes in water were measured on the sea ascribing no turbulent flows by using the tension meter made of a block bearing for the experiment. All the Nylon nets were spreads out easily in water to form a circular cone at relatively low velocity of water and showed the resistance smaller a little in the nets with larger d and l than them with smaller d and l, because the filtration of water through meshes become easier in nets especially with larger l. But PE nettings were not spread out sufficiently on account of their small flexibility and showed higher resistance especially in them with thicker twines. Therefore, the difference in bar length or mesh size and flexibility of nettings between prototype and model nets are regarded to become factors ascribing scale effect. Especially the influence of the difference in mesh size may become large significantly in actual model experiments because the mesh size of model nets is decided at much larger value than that given by scale ratio and so the difference of mesh size between the two nets become much larger than that between nets used in this experiment.

Scale Model Testing of a two-boat midwater trawl net (2척식 중층트롤 모형실험)

  • Jang, Ji-Won;Kim, Chun-Duk;Kim, Tae-An
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.5 no.1
    • /
    • pp.14-20
    • /
    • 1969
  • A scale model net test of the operation of a small two-boat midwater trawl net was performed in the circulating water tank at Pusan Fisheries College. The 1/32 scale model net was constructed after the modelling law of M. Tauti. This type of net is used in Europe for catching sprat like Hering. The net used was 1/32 the actual size. This scale was chosen with consideration for the water tank size. In this experiment, the transfomation of the net shape was observed especially inregard to variations in the height and breadth of the net mouth. These dimensions were varied by changing the breadth of the towing line and the connenting spread.

  • PDF

A Study on Manufacturing and Experimental Techniques for the 1/5th Scale Model of Precast Concrete Large Panel Structure (프리캐스트 콘크리트 대형판 구조물의 1/5 축소모델 제작 및 실험기법 연구)

  • 김상규;이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.198-203
    • /
    • 1995
  • The objective of this study is to provide the information on the techniques of manufacturing and experiment in small scale modeling of precast concrete(P.C.)large panel structures. The adopted scale was 1/5th 4types of experiments were performed : material tests for model concrete and model reinforcement, compressive test of horizontal joint, shear test of vertical joint and cyclic static test of 2-story subassemblage structure. Based on the experimental results, the following conclusions are drawn: (1)Model concrete may have in general larger compressive strength than expected. (2) Model reinforcement can show less ductility if the annealing processes were performed without using vaccuum tube. (3) Failure modes of horizontal and vertical joints were almost same for both prototype and model. But the strength of model appears to be higher than required by similitude law. (4)Hysteretic behavior of 1/5 scale subassemblage model can be made quite similar to prototype's if the ductility of model reinforcement and compressive strength of model concrete could be representative of those of prototype.

  • PDF

The Effects of Experimental Learning Using Small-Scale Chemistry on Scientific Achievement, Durability and Scientific Attitude of High School Students (Small-Scale Chemistry를 활용한 과학 실험 수업이 고등학생의 과학성취도, 파지효과와 과학적 태도에 미치는 영향)

  • Yun, Jin-Nyeo;Moon, Seong-Bae
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.787-795
    • /
    • 2007
  • The purpose of this study was to examine the effects of experimental learning using Small-Scale Chemistry (SSC) on science achievement and scientific attitude of high school students. SSC experiments were devised for 5 experiment themes of high school science textbook. Two classes were chosen from a high school in Busan and adopted into the comparison group and the experimental group; one group with thirty-four students participated in the class with an experimental learning using the SSC (experimental group), and another group with thirty-seven students participated in the class with the traditional learning (comparison group). The major discoveries of this study were as follows: Experimental learning using SSC has shown a significant difference between two groups in the science achievement of the students. Also there was a statistical difference between these two groups in the test which was conducted after a month to find out the durability of the experiment. Thus, the learning using SSC is assumed to be durable. Furthermore, there was a significant difference in scientific attitude between the two groups. It seemed that the learning using SSC had a good influence on fanning students' scientific attitude. In conclusion, an experimental learning using SSC has a positive effect on scientific achievement, the durability and scientific attitude of the students. We hope to develop suitable and various experimental learning materials using the SSC program that can be adopted in the classroom soon.

A Novel Calibration Method Research of the Scale Factor for the All-optical Atomic Spin Inertial Measurement Device

  • Zou, Sheng;Zhang, Hong;Chen, Xi-yuan;Chen, Yao;Fang, Jian-cheng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.415-420
    • /
    • 2015
  • A novel method to measure the scale factor for the all-optical atomic spin inertial measurement device (ASIMD) is demonstrated in this paper. The method can realize the calibration of the scale factor by a self-consistent method with small errors in the quiescent state. At first, the matured IMU (inertial measurement unit) device was fixed on an optical platform together with the ASIMD, and it has been used to calibrate the scale factor for the ASIMD. The results show that there were some errors causing the inaccuracy of the experiment. By the comparative analysis of theory and experiment, the ASIMD was unable to keep pace with the IMU. Considering the characteristics of the ASIMD, the mismatch between the driven frequency of the optical platform and the bandwidth of the ASIMD was the major reason. An all-optical atomic spin magnetometer was set up at first. The sensitivity of the magnetometer is ultra-high, and it can be used to detect the magnetization of spin-polarized noble gas. The gyromagnetic ratio of the noble gas is a physical constant, and it has already been measured accurately. So a novel calibration method for scale factor based on the gyromagnetic ratio has been presented. The relevant theoretical analysis and experiments have been implemented. The results showed that the scale factor of the device was $7.272V/^{\circ}/s$ by multi-group experiments with the maximum error value 0.49%.

Effect of Leg Stiffness on the Running Performance of Milli-Scale Six-Leg Crawling Robot with Payload (소형 6족 주행 로봇의 페이로드와 다리 강성이 로봇의 주행 성능에 미치는 영향)

  • Chae, Soo-Hwan;Baek, Sang-Min;Lee, Jongeun;Yim, Sojung;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.270-277
    • /
    • 2019
  • Inspired by small insects, which perform rapid and stable locomotion based on body softness and tripod gait, various milli-scale six-legged crawling robots were developed to move rapidly in harsh environment. In particular, cockroach's leg compliance was resembled to enhance the locomotion performance of the crawling robots. In this paper, we investigated the effects of changing leg compliance for the locomotion performance of the small light weight legged crawling robot under various payload condition. First, we developed robust milli-scale six-leg crawling robot which actuated by one motor and fabricated in SCM method with light and soft material. Using this robot platform, we measured the running velocity of the robot depending on the leg stiffness and payload. In result, there was optimal range of the leg stiffness enhancing the locomotion ability at each payload condition in the experiment. It suggests that the performance of the crawling robot can be improved by adjusting stiffness of the legs in given payload condition.