• Title/Summary/Keyword: Small wind power

Search Result 332, Processing Time 0.031 seconds

Renewable energy deployment policy-instruments for Cameroon: Implications on energy security, climate change mitigation and sustainable development

  • Enow-Arrey, Frankline
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.56-68
    • /
    • 2020
  • Cameroon is a lower middle-income country with a population of 25.87 million inhabitants distributed over a surface area of 475,442 ㎢. Cameroon has very rich potentials in renewable energy resources such as solar energy, wind energy, small hydropower, geothermal energy and biomass. However, renewable energy constitutes less than 0.1% of energy mix of the country. The energy generation mix of Cameroon is dominated by large hydropower and thermal power. Cameroon ratified the Paris Agreement in July 2016 with an ambitious 20% greenhouse gas (GHG) emission reduction. This study attempts to investigate some renewable energy deployment policy-instruments that could enable the country enhance renewable energy deployment, gain energy independence, fulfill Nationally Determined Contribution (NDC) and achieve Sustainable Development Goals. It begins with an analysis of the status of energy sector in Cameroon. It further highlights the importance of renewable energy in mitigating climate change by decarbonizing the energy mix of the country to fulfill NDC and SDGs. Moreover, this study proposes some renewable energy deployment policy-solutions to the government. Solar energy is the most feasible renewable energy source in Cameroon. Feed-in Tariffs (FiT), is the best renewable energy support policy for Cameroon. Finally, this study concludes with some recommendations such as the necessity of building an Energy Storage System as well a renewable energy information and statistics infrastructure.

Combination resonances in forced vibration of spar-type floating substructure with nonlinear coupled system in heave and pitch motion

  • Choi, Eung-Young;Jeong, Weui-Bong;Cho, Jin-Rae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.252-261
    • /
    • 2016
  • A spar-type floating substructure that is being widely used for offshore wind power generation is vulnerable to resonance in the heave direction because of its small water plane area. For this reason, the stable dynamic response of this floating structure should be ensured by accurately identifying the resonance characteristics. The purpose of this study is to analyze the characteristics of the combination resonance between the excitation frequency of a regular wave and natural frequencies of the floating substructure. First, the nonlinear equations of motion with two degrees of freedom are derived by assuming that the floating substructure is a rigid body, where the heaving motion and pitching motions are coupled. Moreover, to identify the characteristics of the combination resonance, the nonlinear term in the nonlinear equations is approximated up to the second order using the Taylor series expansion. Furthermore, the validity of the approximate model is confirmed through a comparison with the results of a numerical analysis which is made by applying the commercial software ANSYS AQWA to the full model. The result indicates that the combination resonance occurs at the frequencies of ${\omega}{\pm}{\omega}_5$ and $2{\omega}_{n5}$ between the excitation frequency (${\omega}$) of a regular wave and the natural frequency of the pitching motion (${\omega}_{n5}$) of the floating substructure.

Development of Calibration Jet System for Calibrating a Flow Sensor (유동센서 보정용 캘리브레이션 제트 시스템 개발)

  • Chang, J.W.;Byun, Y.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2003
  • A calibration jet system using separate blower is developed to calibrate a flow sensor effectively. Designed open circuit type mini calibration jet system, which has the dimension of $0.5m(W){\times}1.17m(H)$ is small compared with conventional calibration jet systems. The exit of nozzle has exchangeable contractions with a cross section area of $38.5cm^2$ , and a cross section area of $113.1cm^2$, respectively. The ranges of wind speed at exit of exchangeable nozzles are $7.5{\sim}42\;m/s$ and $1.8{\sim}16.5\;m/s$, respectively. The input power for the high pressure blower is 1.18kW. The turning vanes for corner was rolled flat plate parallel to the flow direction. The flow conditioning screen was located immediately downstream of the wide-angle diffuser. The honeycomb and two flow conditioning screens were located in the stagnation chamber. From the economical point of view and the simplicity of the calibration jet system set up and handling, it can be said that the developed calibration jet system is an effective calibration jet system. This system can also be used to calibrate the flow sensor with high resolution.

  • PDF

Effects of Pro-Con Discussion on Students' Decisions in a Class Introducing Environmental Issues (환경 쟁점 수업에서 찬반토론이 학생들의 의사 결정에 미치는 영향)

  • Hong, Sang-Mi;Lee, Jae-Young
    • Hwankyungkyoyuk
    • /
    • v.21 no.1
    • /
    • pp.16-30
    • /
    • 2008
  • This study was aimed at finding what effects pro-con discussion classes have on students' environmental decisions and set a series of research questions as follows. First, in a small group discussion, how a student's environmental decision is affected by opinions of other students in the same group. Second, what would be the relations between a students' personal factors including gender, environmental knowledge, attitude, and behavior and their decisions. A decisional experiment was applied to 185 students consisting of 2 girl classes and 4 boy classes of K highschool located in Kongju City, Chungnam. These students were taking 'Ecology and Environment' as one of the few general selective subjects once a week. Decision issue introduced to the experiment was regarding of constructing a wind power station on Baekdu Mountains which is protected by the law. This issue can be characterized as not conflict between conservation and development but conflict between two different types of environment friendly approaches that make students experience more difficult while making a decision. The results of this study an be summarized as follows. First, after taking the class introducing environmental issues and having a debate other students on the issue both within a small group or all classmates together, just less then 30% of the students changed their selections. Second, students were found to be affected by other students' opinion while making his or her own decision. Third, no relationship was found to be statistically considerable between students decisions and their personal factors except of their courses, liberal or science.

  • PDF

A Case Study of Eco-Design for a Small-Size Electric Heater by Performance, Usability, and Life-Cycle Assessments (성능, 사용성, 환경성 평가를 통한 소형온풍기 설계안 개발 사례)

  • Lee, Baekhee;You, Heecheon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.2
    • /
    • pp.223-232
    • /
    • 2014
  • Life-cycle assessment (LCA) is often employed to quantify the environmental impact of a product in a comprehensive manner. The aspects of performance and usability as well as that of eco-friendliness should be considered in an integrated manner for the market competitiveness of an eco-friendly product. The present study developed a product improvement plan for an eco-friendly electric heater by benchmarking two small-size electric heaters (companies 'H' and 'T') in terms of performance, usability, and eco-friendliness. The performance measurements such as temperature, humidity, wind speed, noise, and power consumption were collected while the two heaters were operated in a laboratory setting. Then, the usability evaluations such as aesthetics, operation satisfaction, performance satisfaction, and overall satisfaction were surveyed for the two heaters using a 5-point scale (1 for very unsatisfied and 5 for very satisfied). Lastly, the LCA analysis was conducted by following the six-step process of eco-friendly product design provided by KEITI. The analysis results of the two products being integrated with the aspects of product, service, and user, four design improvement directions such as eco-efficient, smart, modularized, and user-support were recommended for an eco-friendly electric heater. These proposed concepts would be useful to develop an eco-friendly electric heater design with a high level of market competitiveness.

Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor (전류센서가 없는 열전모듈의 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.436-443
    • /
    • 2017
  • Recently, the development of new energy technologies has become a hot topic due to problems,such as global warming. Unlike renewable energy technologies, such as solar energy generation, solar power, and wind power, which are optimized to achieve medium or above output power, the output power of energy harvesting technology is very small and has not received much attention. On the other hand, as the mobile industry has been revitalized recently, the utility of energy harvesting technology has been reevaluated. In addition, the technology of tracking the maximum power point has been actively researched. This paper proposes a new MPPT(Maximum Power Point Tracking) control method for a TEM(thermoelectric module) for load resistance. The V-I curve characteristics and internal resistance of TEM were analyzed and the conventional MPPT control methods were compared. The P&O(Perturbation and Observation) control method is more accurate, but it is less economical than the CV (Constant Voltage)control method because it usestwo sensors to measure the voltage and current source. The CV control method is superior to the P&O control method in economic aspects because it uses only one voltage sensor but the MPP is not matched precisely. In this paper, a method wasdesigned to track the MPP of TEM combining the advantages of the two control method. The proposed MPPT control method wasverified by PSIM simulation and H/W implementation.

Design and Implementation K-Band EWRG Transceiver for High-Resolution Rainfall Observation (고해상도 강수 관측을 위한 K-대역 전파강수계 송수신기 설계 및 구현)

  • Choi, Jeong-Ho;Lim, Sang-Hun;Park, Hyeong-Sam;Lee, Bae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.646-654
    • /
    • 2020
  • This paper is to develop an electromagnetic wave-based sensor that can measure the spatial distribution of precipitation, and to a electromagnetic wave rain gauge (hereinafter, "EWRG") capable of simultaneously measuring rainfall, snowfall, and wind field, which are the core of heavy rain observation. Through this study, the LFM transmission and reception signals were theoretically analyzed. In addition, In order to develop a radar transceiver, LFM transceiver design and simulation were conducted. In this paper, we developed a K-BAND pulse-driven 6W SSPA(Solid State Power Amplifiers) transceiver using a small HMIC(Hybrid Microwave Integrated Circuit). It has more than 6W of output power and less than 5dB of receiving NF(Noise Figure) with short duty of 1% in high temperature environment of 65 degrees. The manufactured module emits LFM and Square Pulse waveform with the built-in waveform generator, and the receiver has more than 40dB of gain. The transceiver developed in this paper can be applied to the other small weather radar.

A Study on the System Principle of PID Module Implementation (PID Module 구현 원리 시스템에 대한 연구)

  • 위성동;김태성;최창주;권병무
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.183-192
    • /
    • 1999
  • The derivative equation measured of a ${\Delta}MV=Kp*{(EVn-EVn-1)+\frac{1}{Ki/S}* EVn+(Kd/S)*(2PVn-1-PVn-PVn-1)}$ is used on the machine apparatus of industrial field, but this par doesn\`t able to educate now, because we didn\`t have the implementation device of PID module, so the principle implementation system of the PID Module is manufactured and developed. Through this system, the implementation system of PID Module is practiced with that the SV and the set of P, I, D is set on the derivative equation measured of PID. A things to be known of this experiment result is flow. 1)PID module is known that had to be used with the module of A/D and D/A. 2) In process of PV is approached to the SV to follow Kp, Ti and Td to cause a constant of set value on the $MVp=Kp*EV, MV=\frac{1}{Ki}{\int}EVdt, MVd=Td\frac{d}{dt}EV$, the variable rate of E and Kp, Td, Ti in that table 1 is analysed, is same as flow. (1)If Kp is high, PV is near fast to the SV, but Kp is small, PV is near slowly to the SV. (2)If Ki is shot, PV is close fast to the SV, but Ti is high, PV is close slowly to the SV (3)If Td is high, the variable rate of E press hardly when because it doesn\`t increase, but Td is small, the variable rate of E press not hardly, upper with 1), 2), PID module is supposed that be able to do the A/S and an implementation of that apparatus, and getting a success of aim that an engineer want, on control of temperature, tension, velocity, amount of flow, power of wind end so on, to get the principle of automatic implementation in industrial field with cooperation of A/D and D/A module.

  • PDF

Development of P.P.T CanSat System Applying Energy Harvesting System (에너지 하베스팅 시스템을 적용한 자가발전 P.P.T CanSat 시스템 개발)

  • Chae, Bong-Geon;Kim, Su-Hyeon;Kim, Hye-In;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • CanSat has being attracted considerable attentions for the use as training purposes owing to its advantage that can implement overall system functions of typical commercial satellites within a small package like a beverage can. So-called P.P.T CanSat (Power Plant Trio Can Satellite), proposed in this study, is the name of a CanSat project which have participated in 2015 domestic CanSat competition. Its main objective is to self-power on a LED and a MEMS sensor module by using electrical energy harvested from solar, wind and piezo energy harvesting systems. This study describes the system design results, payload level function tests, flight test results and lessons learned from the flight tests.

Broadband Multi-Layered Radome for High-Power Applications (고출력 환경에 적용 가능한 광대역 다층 구조 레이돔)

  • Lee, Ki Wook;Lee, Kyung Won;Moon, Bang Kwi;Choi, Samyeul;Lee, Wangyong;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • In this paper, we developed a broadband multi-layered radome applicable for high-power applications. In this regard, we presented the wave propagation characteristics of the broadband multi-layered radome with the ABCD matrix and obtained the optimal thickness and the material constant for each layer by an optimization algorithm called "particle swarm optimization," implemented by a commercial numerical modeling tool. Further, we redesigned it in view of mechanical properties to reflect environmental conditions such as wind, snow, and ice. The power transmission property was reanalyzed based on the recalculated data of each layer's thickness to consider the limitations of the fabrication of a large structure. Under the condition of a peak electric field strength that is 10 dB above the critical electric field strength in air breakdown, we analyzed the air breakdown by radio frequency(RF) in the designed radome using the commercial full-wave electromagnetic tool. The radome was manufactured and tested by continuous wave(CW) RF small signal and large signal in an anechoic chamber. The test results showed good agreement with those attained by simulation.