• 제목/요약/키워드: Small strain stiffness

검색결과 102건 처리시간 0.03초

미소변형 전단강성에 시간효과가 미치는 영향 (The Shear Stiffness of Small Strain with Time Effect)

  • 김수삼;신현영;김병일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.249-256
    • /
    • 2001
  • This study investigated the shear stiffness of level of small strain with time effect. Time effect consists of rest time, loading rate of recent and current stress path. In addition, for the measurement of small strain, overconsolidated state was represented in a triaxial cell, and drained stress path tests were carried out. Test results show that the loading rate of recent stress path has no effects on the stiffness of very small strain, but the shear stiffness of level of small strain increases with it. Finally, the rest time and the loading rate of current stress path have the effects on the shear stiffness of initial and small strain.

  • PDF

낮은 구속압에서 고결화 혼합재의 미소변형강성 (Small Strain Stiffness of Salt-Cemented Granular Media under Low Confining Pressure)

  • 쭝꽝훙;변용훈;짠밍콰;이종섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.448-456
    • /
    • 2010
  • The mechanical behavior of granular soils is affected by particle bonding including natural cementation. This study addresses a simple model of small strain stiffness and salt concentration based on wave measurements of salt-cemented particulate media. Published models of artificially cemented soils with different curing methods and several types of cementation agents are reviewed. Glass beads with the median diameter of D50 = 0.5mm are prepared in rectangular cells using the water-pluviated method in salt water with different concentrations. Piezo disk elements and bender elements embedded in the cell are used for the measurements of compressional and shear waves. The relationships between elastic wave velocities and salt concentration show an exponential function. The measured small strain stiffness matches well the predicted small strain stiffness based on micromechanics for simple cubic monosized sphere particles. This study demonstrates that the salt concentration in salt-cemented specimen may be evaluated by using elastic wave velocities.

  • PDF

미소변형율 강성을 고려한 지반굴착 해석 (The Analysis of Excavation Behavior Considering Small Strain Stiffness)

  • 김영민
    • 한국지반신소재학회논문집
    • /
    • 제9권2호
    • /
    • pp.21-31
    • /
    • 2010
  • 본 논문에서는 2단 앵커로 지지된 토류벽 굴착에 대한 유한요소해석으로 지표면침하, 토류벽의 횡방향변위, 모멘트분포 예측에 대한 연구를 수행하였다. 지반굴착에 대한 수치해석에 있어서 적절한 구성방정식을 고려하는 것은 매우 중요하다. 본 연구에서는 미소변형율 강성을 고려한 지반 굴착해석이 지표면 침하에 대하여 더 합리적인 예측을 보여 주었다. 또한 미소변형율 강성변수에 대한 굴착해석에 미치는 영향에 대해서도 매개변수 분석을 수행하였다.

  • PDF

Investigation of 1D sand compression response using enhanced compressibility model

  • Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.341-345
    • /
    • 2021
  • 1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.

Embedded type new in-situ soil stiffness assessment and monitoring technique

  • Namsun Kim;Jong-Sub Lee;Younggeun Yoo;Jinwook Kim;Junghee Park
    • Smart Structures and Systems
    • /
    • 제34권1호
    • /
    • pp.33-40
    • /
    • 2024
  • We aimed to assess the evolution of small-strain stiffness and relative density in non-compacted embankment layers. We developed embedded type in-situ soil stiffness measurement devices for monitoring small-strain stiffness occurring after filling at a test site and conducted comprehensive laboratory compaction tests using an oedometer cell with a bender element. However, direct comparison is extremely difficult because the shear wave velocity measured in the field and laboratory depend on depth and effective stress, respectively. Therefore, we propose a method for establishing a relationship between effective stress and depth using a compressibility model. In this study, the shear wave velocity measured in the field was compared to the estimated shear wave velocity-depth profiles for completely dry and saturated conditions with different relative densities. The relative density under saturated soil conditions may vary between 50% and 90% and tends to be closer to 95%. Under dry soil conditions, the relative density of the embankment can vary from 30% to 70% and tends to approach 76%. For model validation, the relative density estimated from shear wave velocity-depth profiles was compared to that estimated from DCPI data. In other words, the results analyzed in the context of an effective stress-depth model enable the prediction of engineering properties such as the small-strain stiffness and relative density of embankment layers. This study demonstrates that physics-based data analyses successfully capture the relative density of non-compacted embankment layers.

재료의 비선형성을 고려한 터널의 내진성능평가에 관한 연구 (A Study on Seismic Performance Evaluation of Tunnel to Considering Material Nonlinearity)

  • 최병일;하명호;노은철;박시현;강기천
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권3호
    • /
    • pp.92-102
    • /
    • 2022
  • 대표적인 지중구조물인 터널시설물의 거동 특성을 평가하기 위해 다양한 수치해석 모델을 활용할 수 있다. 일반적으로 수치해석시 가장 많이 사용한 Mohr-Coulomb 모델은 탄성-완전소성 거동 모델로 하중증가-하중감소 단계시 변형 특성이 동일하여, 굴착해석의 경우 변위가 현장 상황과 다르게 나타날 수 있는 문제점이 있다. 그에 비해 HS-small Strain Stiffness 모델은 지반별 적용 범위가 넓으며, 초기탄성계수 및 비선형곡선 파라미터 하중증가-하중감소 단계의 탄성계수 등을 입력 가능하게 하여 흙의 변형 특성이 현장 조건에 맞게 해석 가능하다고 알려져 있다. 하지만 토목 기술자들은 지반의 특성 계수 추정의 어려움으로 인해 재료 비선형 특성을 적용 가능한 모델의 사용에 어려움이 있다. 본 연구에서는 토목 기술자들이 터널 수치해석시 일반적으로 적용하는 Mohr-Coulomb 모델과 지반 비선형성을 고려 가능한 HS Small strain Stiffness 모델을 적용한 내진성능평가 결과 값을 비교하여 합리적인 모델 선택의 필요성을 검토하였다.

DEM study on effects of fabric and aspect ratio on small strain stiffness of granular soils

  • Gong, Jian;Li, Liang;Zhao, Lianheng;Zou, Jinfeng;Nie, Zhihong
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.57-65
    • /
    • 2021
  • The effects of initial soil fabric and aspect ratio (AR) on the small-strain stiffness (G0) of granular soils are studied by employing discrete element method (DEM) numerical analysis. Elongated clumps composed of subspheres were adopted, and the G0 values were obtained by DEM simulations of drained triaxial tests under different densities and initial confining pressure (p0). The DEM simulations indicate that the initial soil fabric has an insignificant effect on G0. The effect of the AR on G0 is related to the initial density. Namely, for dense specimens, G0 first increases with increasing AR, reaching a plateau value when the AR ≥ 1.5. However, for loose specimens, G0 gradually increases as the AR increases. Microscopic examination reveals that G0 uniquely depends on the coordination number of the particles (CN-particle) rather than the subspheres (CN-sphere) at the particulate level for the effects of initial soil fabric and AR. Finally, Poisson's ratio ν0 is also determined by CN-particle. In addition, based on data in literature and this study, ν0 can be fitted as ν0 = 5.920(G0/(p0)1/3)-0.99, which can be used to predict ν0 of granular soils based on the measured G0.

평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(II)-미소변형률에서의 변형특성 이방성 (Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part II) -Deformation Characteristics at Extremely Small Strain Level)

  • 박춘식;장정욱
    • 한국지반공학회지:지반
    • /
    • 제14권4호
    • /
    • pp.33-46
    • /
    • 1998
  • 공중낙하법에 의해 만든 등방압밀 모래공시 체를 미소변형률 측정장치를 사용한 평면변형률압축 시험을 실시하여 미소변형률에서 파괴 후까지의 강성률에 대한 이방성을 연구하였다. 세계 각국의 주요 연구기관에서 사용되고 있는 7종류의 연구용 표준사 공시체를 멤브레인의 관입에 의한 오차와 변위를 외부에서 측정함으로 하여 생기는 오차(bedding error) 등의 영향을 제거하여 측정한 최대주응력방향의 변형률과 최소주응력방향의 변형률을 각각 0.0001%에서 10%까지 넓은 범위에 걸친 응력-변형률 관계를 얻었다. 그 결과 최대 영률 $E_{max}$은 퇴적면과 최대주응력 $\delta_1$이 이루는 각도에 관계없이 일정하였다. 그러나, 정규화한$E_{max}$은 모래의 종류에 따라 달랐다. 또, 강성률의 변형률 수준과 응력 수준에 대한 의존성은 $\delta$가 감소함에 따라 증가하였다.

  • PDF

동적 및 정적 실험 방법으로 평가한 지반의 초기 강성 비교 (Comparison of dynamic and static methods in the measurement of the initial stiffness of soil)

  • 주진현;정영훈;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.940-951
    • /
    • 2009
  • A comparative study on dynamic and static measurement of initial stiffness was conducted. Because soil stiffness decreases even at very small strains, the initial stiffness has been measured by dynamic tests using shear wave velocity measurement. On the other hand, due to the advance of local strain measurement, the triaxial testing device is capable of measuring the static initial stiffness. It has been known that initial stiffness measured by static triaxial tests is generally lower than that measured by dynamic tests possibly due to the limitation of static measurement of displacement at very small strains. This study presents experimental results indicating that the elastic shear moduli could be the same both in dynamic and static measurements owing to the soil anisotropy induced by anisotropic stresses.

  • PDF

FRP복합체로 보강된 실물모형 RC보의 보강재 강성에 따른 휨 보강성능 (Flexural Performance of Full-scale RC Beams Strengthened with Different Amount of FRP Composite)

  • 최기선;유영찬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.125-128
    • /
    • 2006
  • Many research have been carried out concerned with the flexural performance of FRP composite in a various ways. Most of them, however, have used a small-scale specimen, so haven't been fully verified by full-scale model test. In this study, a full-scale RC beam model test for flexural strengthening with CFRP composites has been performed in order to verify test results obtained through a series of small-scale model test with respect to FRP stiffness affecting strengthening performance in the previous studies. A total of 4 specimens have been manufactured including control beam. The specimens strengthened with CFRP composites consist of 3 different CFRP stiffness with 2 types of CFRP composite. Consequently, the purpose of this study is to estimate influence of the size effect of specimens and FRP stiffness on the flexural performance. As a result, the effective strain of FRP composite is inversely proportional to FRP stiffness and ensures the same performance with small-scale model test.

  • PDF