• Title/Summary/Keyword: Small signal analysis

Search Result 585, Processing Time 0.033 seconds

Analysis of the error signals for infrared reticle seekers in multiple targets (다중 표적에 대한 적외선 레티클 탐색기의 오차 신호 분석)

  • 한성현;홍현기;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1438-1446
    • /
    • 1996
  • Infrared seekers using reticles with a single detector have been widely used due to small size and low cost. However, the analysis of the error signals and the performance in multiple targets are performed either simplistically or not at all. In this paper, we present detector signals and processing results using image and signal processing techniques, especially performance analysis in multiple targets. The simulation results are essential to make the advanced signal processing part of retical seekers which can deal with various engagement scenarios.

  • PDF

Presentation of budge sonance with small action on the body motion

  • Kim, Jeong-lae;Kim, Kyu-dong
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.35-39
    • /
    • 2015
  • This study was presented the small action by the budge sonance function. An estimation of budge sonance function was acquired displacements across all condition with a variation of small action. The budge sonance function was to be indicated to express the flow rate of body motion. Their function was suggested an issue of the action condition by budge sonance. This system was proposed a combination of the body motion and small action. The acquired sonance signal was to render the small action of body motion with budge sonance function. The analysis of budge function was generally realized a variation from displacements on the fast body motion. Budge sonance signal of action that vision condition was acquired to a variation of the $Vi-{\beta}_{AVG}$ with $(-4.954){\pm}(-5.42)$ units, that vestibular condition was acquired to a variation for the $Ve-{\beta}_{AVG}$ with $(-2.288){\pm}0.212$ units, that somatosensory condition was acquired to a variation for the $So-{\beta}_{AVG}$ with $(-0.47){\pm}0.511$ units, that CNS condition was acquired to a variation for the $C-{\beta}_{AVG}$ with $(-0.171){\pm}(-0.012)$ units. Budge sonance function was proposed the small action from axial action on body control. We know a body motion response from axial action was not only variation of budge sonance, but also body motion of fast body motion.

Operational Characteristics of Superconducting Amplifier using Vortex Flux Flow

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.260-264
    • /
    • 2008
  • The operational characteristics of superconducting amplifier using vortex flux flow were analyzed from an equivalent circuit in which its current-voltage characteristics for the vortex motion in YBCO microbridge were reflected. For the analysis of operation as an amplifier, dc bias operational point for the superconducting amplifier is determined and then ac operational characteristics for the designed superconducting amplifier were investigated. The variation of transresistance, which describes the operational characteristics of superconducting amplifier, was estimated with respect to conditions of dc bias. The current and the voltage gains, which can be derived from the circuit for small signal analysis, were calculated at each operational point and compared with the results obtained from the numerical analysis for the small signal circuit. From our paper, the characteristics of amplification for superconducting flux flow transistor (SFFT) could be confirmed. The development of the superconducting amplifier applicable to various devices is expected.

Analysis of Oscillation Modes Occurred by Thyristor Switching Operations of the TCSC in OMIB System (TCSC를 포함한 일기무한모선계통에서 싸이리스터의 스위칭에 의한 진동모드 해석)

  • Dong, Moo-Hwan;Lee, Yun-Ho;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.12-13
    • /
    • 2006
  • In this paper, RCF(Resistive Companion Form) analysis method which is used to analyze small signal stability problems of non-continuous systems including switching device. The RCF analysis method are applied to the power systems with the thyristor controled FACTS equipments such as TCSC. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with switching devices such as FACTS equipments. As an applicable example of the RCF method in power system, the one machine infinite bus system including TCSC at generator terminal bus is investigated and the results proved that variations of oscillation modes after periodic switching operations of TCSC can be calculated exactly.

  • PDF

Small signal stability analysis of oscillations caused by switching operations of SVC (SVC의 스위칭 동작에 의해 발생되는 진동현상의 미소신호 안정도 해석)

  • Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.495-497
    • /
    • 2005
  • A new small signal stability analysis method for eigenvalue analysis is presented. This method is called RCF method and based on the computation of the state transition equations and state transition matrix over a specified time interval that corresponds to one or some cycle operations of the system. This method is applicable to any system with or without switching elements. As an applicable example of RCF method in power system, the one machine infinite bus system connected switching SVC at generator terminal is investigated and the results proved that variations of oscillation modes after switching operations can be calculated exactly.

  • PDF

The reduction of computer time in small-signal stability analysis in power systems : with clustering technique (전력계통의 미소신호 안정도 해석에서 계산시간 단축에 관한 연구 : 크러스터링 기법에 대하여)

  • Kwon, Sae-Hyuk;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.138-140
    • /
    • 1992
  • This paper represents how to reduce the computer time in small signal stability analysis by selecting the dominant oscillation modes with frequency of 0.5 to 1.2 Hz using the clustering technique. Clustering technique links the buses which are expected to be similar with zero-impedance lines and the voltage variations of these buses are regarded to be identical. The computer time was reduced remarkably with this technique and the effect of clustering will be powerful in the analysis of large-scale power systems.

  • PDF

Small signal stability analysis using RCF method (RCF법을 사용한 미소신호 안정도 해석방법)

  • Kim, Deok-Young;Meliopoulos, A. P. Sakis
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.94-97
    • /
    • 2002
  • A new small signal stability analysis method for eigenvalue analysis is presented. The method is based on the computation of the transition matrix over a specified time interval that corresponds to one cycle operation of the system The method is applicable to any system with or without nonlinear elements. An applicable example of RCF method is presented and the eigenvalues are compared with those of the conventional state space method to show the exactness of the computed eigenvalues of the new method. Also, the variations of oscillation modes which were caused by the switching operation can be analyzed exactly using RCF method.

  • PDF

An Eigenvalue Sensitivity Analysis of the Iterative Eigenvalue Calculation Algorithm (반복계산에 의한 고유치 계산 알고리즘에서의 고유치 감도해석)

  • Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.217-219
    • /
    • 2001
  • This paper presents a new eigenvalue sensitivity analysis method based on AESOPS algorithm. The additional calculation steps are derived from the original AESOPS algorithm. The additional calculation steps are performed directly from the AESOPS algorithm after iteratively calculating electro-mechanical oscillation modes in small signal stability problems. Owing to the structural characteristics of partitioned sub-matrix of state space equations, the partial differentiation terms of system state matrix for obtaining eigenvalue sensitivity indices can be calculated very simply. By the method presented in this paper, the AESOPS algorithm can be used in controller design problem as well as analysis of small signal stability problem.

  • PDF

Large Signal Determination of Non-Linear Output Capacitance of Gallium-Nitride Field Effect Transistors from Switch-Off Voltage Transients - A Numerical Method

  • Pentz, David;Joannou, Andrea
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1912-1919
    • /
    • 2018
  • The output capacitance of power semiconductor devices is important in determining the switching losses and in the operation of some resonant converter topologies. Thus, it is important to be able to accurately determine the output capacitance of a particular device operating at elevated power levels so that the contribution of the output capacitance discharge to switch-on losses can be determined under these conditions. Power semiconductor switch manufacturers usually measure device output capacitance using small-signal methods that may be insufficient for power switching applications. This paper shows how first principle methods are applied in a novel way to obtain more relevant large signal output capacitances of Gallium-Nitride (GaN) FETs using the drain-source voltage transient during device switch-off numerically. A non-linear capacitance for an increase in voltage is determined with good correlation. Simulations are verified using experimental results from two different devices. It is shown that the large signal output capacitance as a function of the drain-source voltage is higher than the small signal values published in the data sheets for each of the devices. It can also be seen that the loss contribution of the output capacitance discharging in the channel during switch-on correlates well with other methods proposed in the literature, which confirms that the proposed method has merit.

Super-High-Speed Lightwave Demodulation using the Nonlinearities of an Avalanche Photodiode

  • Park, Young-Kyu
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.273-278
    • /
    • 2002
  • Even though the modulating signal frequency of the light is too high to detect directly, the signal can be extracted by frequency conversion at the same time as the detection by means of the non-linearity of the APD. An analysis is presented for super-high-speed optical demodulation by an APD with electronic mixing. A normalized gain is defined to evaluate the performance of the frequency conversion demodulation. The nonlinear effect of the internal capacitance was included in the small signal circuit analysis. We showed theoretically and experimentally that the normalized gain is dependent on the down converted difference frequency component. In the experiment, the down converted different frequency outputs became larger than the directly detected original signal for the applied local signal of 20㏈m.