• Title/Summary/Keyword: Small reservoir

Search Result 339, Processing Time 0.028 seconds

A Study of Carry Over Contamination in Chematology (이월오염에 대한 연구)

  • Chang, Sang-Wu;Kim, Nam-Yong;Lyu, Jae-Gi;Jung, Dong-Jin;Kim, Gi-You;Park, Yong-Won;Chu, Kyung-Bok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.3
    • /
    • pp.178-184
    • /
    • 2005
  • Carry over contamination has been reduced in some systems by flushing the internal and external surfaces of the sample probe with copious amount of diluent. It between specimens should be kept as small as possible. A built-in, continuous-flow wash reservoir, which allows the simultaneous washing of the interior and exterior of the syringe needles, addresses this issue. In addition, residual contamination can further be prevented through the use of efficient needle rinsing procedures. In discrete systems with disposable reaction vessels and measuring cuvets, any carry over is entirely caused by the pipetting system. In analyzers with reuseable cuvets or flow cells, carry over may arise at every point through which high samples pass sequentially. Therefore, disposable sample probe tips can eliminate both the contamination of one sample by another inside the probe and the carry over of in specimen into the specimen in the cup. The results of the applicative carry over experiment studied on 21 items for total protein (TP), albumin (ALB), total bilirubin (TB), alkaline phosphatase (ALP), aspratate aminotranferase (AST), alanine aminotranferase (ALT), gamma glutamyl transferase (GGT), creatinine kinase (CK), lactic dehydrogenase (LD), creatnine (CRE), blood urea nitrogen (BUN), uric acid (UA), total cholesterol (TC), triglyceride (TG), glucose (GLU), amylase (AMY), calcium (CA), inorganic phosphorus (IP), sodium (Na), potassium (K), chloride (CL) tests in chematology were as follows. Evaluation of process performance less than 1% in all tests was very good, but a percentage of ALB, TP, TB, ALP, CRE, UA, TC, GLU, AMY, IP, K, Na, and CL was 0%, implying no carry over. Other tests were ALT(-0.08%), GGT(-0.09%), CK(0.08%), LD(0.06%), BUN(0.12%), TG (-0.06%), and CA(0.89%).

  • PDF

A Study on the determination of the optimal resolution for the application of the distributed rainfall-runoff model to the flood forecasting system - focused on Geumho river basin using GRM (분포형 유역유출모형의 홍수예보시스템 적용을 위한 최적해상도 결정에 관한 연구 - GRM 모형을 활용하여 금호강 유역을 중심으로)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • The flood forecasting model currently used in Korea calculates the runoff of basin using the lumped rainfall-runoff model and estimates the river level using the river and reservoir routing models. The lumped model assumes homogeneous drainage zones in the basin. Therefore, it can not consider various spatial characteristics in the basin. In addition, the rainfall data used in lumped model also has the same limitation because of using the point scale rainfall data. To overcome the limitations as mentioned above, many researchers have studied to apply the distributed rainfall-runoff model to flood forecasting system. In this study, to apply the Grid-based Rainfall-Runoff Model (GRM) to the Korean flood forecasting system, the optimal resolution is determined by analyzing the difference of the results of the runoff according to the various resolutions. If the grid size is to small, the computation time becomes excessive and it is not suitable for applying to the flood forecasting model. Even if the grid size is too large, it does not fit the purpose of analyzing the spatial distribution by applying the distributed model. As a result of this study, the optimal resolution which satisfies the accuracy of the bsin runoff prediction and the calculation speed suitable for the flood forecasting was proposed. The accuracy of the runoff prediction was analyzed by comparing the Nash-Sutcliffe model efficiency coefficient (NSE). The optimal resolution estimated from this study will be used as basic data for applying the distributed rainfall-runoff model to the flood forecasting system.

Analysis of Channel Changes in Mountain Streams Due to Typhoon Hinnamnor Flood - A Case Study on Shingwangcheon and Naengcheon Streams in Pohang - (태풍 힌남노 홍수로 인한 산지 중소하천의 하도 변화 분석 - 포항 신광천 및 냉천을 사례로 -)

  • Chanjoo Lee;Seong Gi An;Eun-Kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.97-106
    • /
    • 2023
  • This study analyzed morphological changes in the Singwangcheon and Naengcheon streams in Pohang caused by flooding due to Typhoon Hinnamnor. Analysis of the changes in river channel area from the past to recent times using aerial photos and drone-taken images showed that the river width had gradually decreased since the 1960s. However, after the flood, the river width increased again. Changes in the river cross-section before and after the flood show that a large amount of coarse sediment was deposited inside the river bend while the outer bank was eroded. The water levels calculated using HEC-RAS for the pre-flood cross-section based on the flood frequency discharges and estimated discharge from Oer Reservoir were significantly lower than the observed water level, which means that the cross-sectional change was not considered. The results of this study suggest that it is necessary to consider cross-sectional changes due to sediment transport when estimating the flood level of small and medium-sized mountain streams, and it is needed to investigate the geomorphic changes after floods.

Assessing the Plankton Dynamics in Lakes and Reservoirs Ecosystem in the Southwestern Parts of Korea (국내 남서부지역 호수 및 저수지 생태계의 플랑크톤 동태 변화)

  • Kim, Hyun-Woo;La, Geung-Hwan;Jeong, Kwang-Seuk;Park, Jong-Hwan;Huh, Yu-Jung;Kim, Sang-Don;Na, Jeong-Eun;Jung, Myoung-Hwa;Lee, Hak-Young
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • This study compares and contrasts the dynamics of plankton in 31 temperate lakes and reservoirs, and considers particularly the biomass ratio of zooplankton to phytoplankton and ecological model application. A total of 89 species of zooplankton were identified (70 rotifers, 14 cladocerans and 5 copepods) and a total of 554 species of phytoplankton were identified (176 Bacillariophyceae, 237 Chlorophyceae, 68 Cyanophyceae, and 73 other algal taxa). The total plankton abundance and species diversity were showed distinctive spatial and seasonal variation. Annual average phytoplankton density was $7,350{\pm}15,592$ cells $mL^{-1}$ (n=124), and the lowest was $855{\pm}448$ cells $mL^{-1}$ (n=4), while the highest was $72,048{\pm}13,4631$ cells $mL^{-1}$ (n=4). For zooplankton, small rotifer groups dominated the study sites, and approximately 3~10 species appeared in the study sites. Statistical analysis and an ecological model application revealed that the size of reservoirs affected the structure size of plankton community, i.e. relatively large number of species were found in smaller reservoirs. From this result, we can conclude that management strategy for the reservoir environment has to be focused more on small-size reservoirs, in terms of plankton community ecology.

Studies on the phrases of Yellow Emperor's internal classic(黃帝內經) for the physiology on the spleen and stomach (비위생리(脾胃生理)에 수용(授用)되는 황제내경(黃帝內經) 어구(語句)에 관(關)한 연구(硏究))

  • Won, Jin-Hui
    • The Journal of Korean Medicine
    • /
    • v.16 no.2 s.30
    • /
    • pp.453-489
    • /
    • 1995
  • The research of the phrases related with physiology of stomach and spleen in the contents of Huang Di Nei Jing(黃帝內經) known as the Bible of oriental medicine will make a contribution to a deep understanding of disease of stomach and spleen and a proper clinical diagnosis and treatment of them. In this research of the most appropriate glosses recorded nine kinds of representative medical books including Huang Di Nei Jing Somoon(黃帝內經素問) of Wang Bing(王氷) were picked out: The summaries of the selected contents are as follows: 1. The word 'saliva(涎)' in 'the spleen controls saliva(脾爲涎)' can be viewed as a generic term referring to oral cavity secretion gland as well as the secretion fluid of salivary gland. 2. The phases 'a large reservoir(太倉)', barn organs', 'a reserboir of food stuff', 'a stomach as the market(胃爲之市)', etc mean the function of stomach to receive food(胃主受納). 3. The phase 'generation of five tastes(五味出焉)' means both 'the function of stomach to transform food into chyme(胃主腐熟)' and 'the channelling function of spleen.(脾主運化)' 4. The flowing of the food-Qi(食氣) into stomach brings about spreading Jung(精) into liver and then percolating Jung(精) flow into channel. The channel-Qi(脈氣) flows into lung through channel. As a result, all kinds of channels gather together in lung and Jung(精) is sent into skin and hair. The assembly of Jung(精) with skins and channels moves Qi(氣) into fu-organ and so jung(精) and mental activity(神明) in fu-organ(府) come to be in four organs(四臟). Then if Qi(氣) comes back to power balance unit(權衡) being in the state of equilibrium(權衡以平), the hole of Qi(氣口) comes to determine the matter of life and death through achieving Chun-quan-chi(-寸-關-尺). The above mentioned phrases means the digestion, asorption and transmission of food. When food is taken in stomach, Jung-Qi(精氣) comes to be over flowed upward into spleen, back into lung, finally downward into bladders through water-conduit(水道) controlled by lung. When water- Jung(水精) radiates into whole body with channels of five organs(五臟), both of them fit together with and yin-yang(陰-陽). Therefore, the grasping of the rise and decline of yin-yang(陰C-陽) is necessary to consult patients. The above mentioned phrases is properly viewed to designate the asorption, transmission and excretion of food. 5. Spleen controls flesh(脾之合肉也), the state of spleen is known by human lips, and what this means is that liver plays functions of spread and expansion(肝主疏泄). 6. The phrase 'Jung Jung'((中精)) in 'gallbladder dominates Jung jung(膽主中精)', which in one of the specific expression of 'liver plays functions of spread and expansion(肝主疏泄). 7. It is right that the phase 'The eleven organs in all are determined by gallbladder'(凡十,一臟取決於膽也) is correctly paraphrased as 'only one of ten organs, spleen, is determined by gallbladder'.(凡十,一臟取決於膽也), 8. The small intestine is an organ. which receives the materials digested and sends them out. This means that the function of transforming materials(化物) factually refers to that of separating clearity and blur(泌別淸濁). And it is also thought to have the function of ascending clearity and descending blur(升淸降濁), 9. A large intestine is a transmitting organ(傳導之官) from which a change comes out(變化出焉). the phrase 'change'(變化) in this sentence means both the intake of water and nutrition and the formation procedure of stool through excretion of mucocele.

  • PDF

$CO_2$ Transport for CCS Application in Republic of Korea (이산화탄소 포집 및 저장 실용화를 위한 대한민국에서의 이산화탄소 수송)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.18-29
    • /
    • 2010
  • Offshore subsurface storage of $CO_2$ is regarded as one of the most promising options to response severe climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the offshore subsurface geological structure such as the depleted gas reservoir and deep sea saline aquifer. Since 2005, we have developed relevant technologies for marine geological storage of $CO_2$. Those technologies include possible storage site surveys and basic designs for $CO_2$ transport and storage processes. To design a reliable $CO_2$ marine geological storage system, we devised a hypothetical scenario and used a numerical simulation tool to study its detailed processes. The process of transport $CO_2$ from the onshore capture sites to the offshore storage sites can be simulated with a thermodynamic equation of state. Before going to main calculation of process design, we compared and analyzed the relevant equation of states. To evaluate the predictive accuracies of the examined equation of states, we compare the results of numerical calculations with experimental reference data. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_{2}O$, $SO_{\chi}$, $H_{2}S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. This paper analyzes the major design parameters that are useful for constructing onshore and offshore $CO_2$ transport systems. On the basis of a parametric study of the hypothetical scenario, we suggest relevant variation ranges for the design parameters, particularly the flow rate, diameter, temperature, and pressure.

The Creation and Transformation Process of Ssangsanjae as a Private Garden in the Late Joseon Dynasty (조선 후기 민가 정원 쌍산재의 조영과 변화 과정)

  • Kim, Seo-Lin;Sung, Jong-Sang;Kim, Hee-Su;Cui, Yu-Na;Jung, Jin-Ah;Cho, Seong-Ah
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Ssangsanjae was created in the mid-1800s, It is located at Jiri Mountain to the north and the Seomjin River to the south. This garden has not changed much even though it has passed through the sixth generation since its creation, so it still retains the features of a private garden in the late Joseon Dynasty. This study focused on the changing landscape of Ssangsanjae as a historical garden; through field surveys, interviews and analysis of builder's collection, boards and couplets. Ssangsanjae is largely classified into inner and outer gardens, and the inner is divided into an entry space, a residential space, and a backyard. The backyard consists of Seodangchae, it's garden, Gyeongamdang, and swimming pool, and is connected to the Sado Reservoir area, which is the outer garden. The distinct vegetation landscape of Ssangsanjae are a 13,000m2 bamboo and green tea field, Peony(Paeonia suffruticosa Andr. and Paeonia lactiflora var. trichocarpa(Bunge) Stern) planted on both sides of the road that crosses the lawn, the view through a frame(額景) shown by the twisted branches of Camellia and Evergreen spindletree, and a fence made of Trifolia Orange(Poncirus trifoliata) and Bamboo. Ssangsanjae stands out for its spatial composition and arrangement in consideration of the topography and native vegetation. The main building was named by the descendants based on the predecessor's Aho(pseudonym), and it is the philosophical view of the predecessors who tried to cultivate the younger students without going up on the road. The standing stone and white boundary stone built by Mr. Oh Ju Seok are Ssangsanjae's unique gardening facilities. The stone chairs, and swimming pool which were created by the current owner for the convenience of families and visitors also make a distinctive landscape. Ssangsanjae, for residents, was a place for living, exchanging friendships, training himself and seculusion, for children was a place for learning, but now is 'the private garden' where many people can heal themselves. Over the 200 years, the landscape of Ssangsanjae's inner and outer gardens experienced large and small changes. As such, it is necessary to recognize the historical gardens with changing properties as a living heritage. This study is significant in that, as the first study to approach Ssangsanjae in the view of landscape research, it provides basic data on Ssangsanjae as a destination of garden tourism.

Analysis of Surface Displacement of Oil Sands Region in Alberta, Canada Using Sentinel-1 SAR Time Series Images (Sentinel-1 SAR 시계열 영상을 이용한 캐나다 앨버타 오일샌드 지역의 지표변위 분석)

  • Kim, Taewook;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • SAGD (Steam-Assisted Gravity Drainage) method is widely used for oil recovery in oil sands regions. The SAGD operation causes surface displacement, which can affect the stability of oil recovery plants and trigger various geological disasters. Therefore, it isimportant to monitor the surface displacement due to SAGD in the oil sands region. In this study, the surface displacement due to SAGD operations of the Athabasca oil sands region in Alberta, Canada, was observed by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique to the Sentinel-1 time series SAR data acquired from 2016 to 2021. We also investigated the construction and expansion of SAGD facilitiesfrom Landsat-7/8 time seriesimages, from which the characteristics of the surface displacement according to the oil production activity of SAGD were analyzed. Uplift rates of 0.3-2.5 cm/yr in the direction of line of sight were observed over the SAGDs and their vicinity, whereas subsidence rates of -0.3--0.6 cm/yr were observed in areas more than several kilometers away from the SAGDs and not affected by oil recovery activities. Through the analysis of Landsat-7/8 images, we could confirm that the SAGDs operating after 2012 and showing high oil production activity caused uplift rates greater than 1.6 cm/yr due to the subsurface steam injection. Meanwhile, very small uplift rates of several mm per year occurred over SAGDs which have been operated for a longer period of time and show relatively low oil production activity. This was probably due to the compression of reservoir sandstone due to continuous oil recovery. The subsidence observed in areas except for the SAGDs and their vicinity estimated to be a gradual land subsidence caused by melting of the permafrost. Considering the subsidence, it was expected that the uplift due to SAGD operation would be greater than that observed by the PSInSAR. The results of this study confirm that the PSInSAR can be used as an effective means for evaluating productivity and stability of SAGD in the extreme cold regions.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.