Assessing the Plankton Dynamics in Lakes and Reservoirs Ecosystem in the Southwestern Parts of Korea

국내 남서부지역 호수 및 저수지 생태계의 플랑크톤 동태 변화

  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University) ;
  • La, Geung-Hwan (Department of Environmental Education, Sunchon National University) ;
  • Jeong, Kwang-Seuk (Department of Biological Sciences, Pusan National University) ;
  • Park, Jong-Hwan (Yeongsan River Environmental Research Center) ;
  • Huh, Yu-Jung (Yeongsan River Environmental Research Center) ;
  • Kim, Sang-Don (Yeongsan River Environmental Research Center) ;
  • Na, Jeong-Eun (Department of Biological Science, Chonnam National University) ;
  • Jung, Myoung-Hwa (Department of Biological Science, Chonnam National University) ;
  • Lee, Hak-Young (Department of Biological Science, Chonnam National University)
  • 김현우 (순천대학교 사범대학 환경교육과) ;
  • 라긍환 (순천대학교 사범대학 환경교육과) ;
  • 정광석 (부산대학교 자연과학대학 생물학과) ;
  • 박종환 (국립환경과학원 영산강물환경연구소) ;
  • 허유정 (국립환경과학원 영산강물환경연구소) ;
  • 김상돈 (국립환경과학원 영산강물환경연구소) ;
  • 나정은 (전남대학교 자연과학대학 생물학과) ;
  • 정명화 (전남대학교 자연과학대학 생물학과) ;
  • 이학영 (전남대학교 자연과학대학 생물학과)
  • Received : 2010.04.27
  • Accepted : 2010.05.20
  • Published : 2010.06.01

Abstract

This study compares and contrasts the dynamics of plankton in 31 temperate lakes and reservoirs, and considers particularly the biomass ratio of zooplankton to phytoplankton and ecological model application. A total of 89 species of zooplankton were identified (70 rotifers, 14 cladocerans and 5 copepods) and a total of 554 species of phytoplankton were identified (176 Bacillariophyceae, 237 Chlorophyceae, 68 Cyanophyceae, and 73 other algal taxa). The total plankton abundance and species diversity were showed distinctive spatial and seasonal variation. Annual average phytoplankton density was $7,350{\pm}15,592$ cells $mL^{-1}$ (n=124), and the lowest was $855{\pm}448$ cells $mL^{-1}$ (n=4), while the highest was $72,048{\pm}13,4631$ cells $mL^{-1}$ (n=4). For zooplankton, small rotifer groups dominated the study sites, and approximately 3~10 species appeared in the study sites. Statistical analysis and an ecological model application revealed that the size of reservoirs affected the structure size of plankton community, i.e. relatively large number of species were found in smaller reservoirs. From this result, we can conclude that management strategy for the reservoir environment has to be focused more on small-size reservoirs, in terms of plankton community ecology.

본 연구는 국내 31개 호소 지점을 대상으로 동식물플랑크톤 생체량 및 생태학적 모델 적용을 고려한 호소간의 플랑크톤 동태 비교에 목적이 있다. 조사기간 동안 총 89종의 동물플랑크톤(윤충류 70종, 지각류 14종, 요각류 5종)과 554종의 식물플랑크톤(규조류 176종, 녹조류 237종, 남조류 68종 그리고 기타 73종)이 동정 확인 되었다. 플랑크톤 밀도 및 종 다양도는 지점별 및 계절별 상이한 차이를 나타내었다. 전체 호소의 연평균 총 식물플랑크톤 밀도는 $7,350{\pm}15,592$ cells $mL^{-1}$ (n=124)이었으며, 가장 낮은 지점에서는 평균 $855{\pm}448$ cells $mL^{-1}$ (n=4), 가장 높은 지점에서는 평균 $72,048{\pm}13,4631$ cells $mL^{-1}$ (n=4)인 것으로 파악되어 호소별 식물플랑크톤 밀도 차가 매우 높은 것으로 조사되었다. 동물플랑크톤 군집은 소형 동물플랑크톤인 윤충류가 우점하였으며, 지각류 및 요각류의 출현 종수는 낮은 것으로 파악되었다. 각 조사지점별 출현한 총 동물플랑크톤 종수는 상이하였으며, 호소별 평균 출현 종수는 약 3~10여 종인 것으로 나타났다. 상관관계 분석 및 SOM 모형의 적용 결과 동식물플랑크톤의 종수와 밀도는 호소의 규모가 작을수록 높아지는 경향이 존재하고 있음을 파악할 수 있다. 조사대상 호소에 대해서 플랑크톤 군집 구조 관점에서 수자원 관리가 실시될 경우 대형 호소보다는 중소형 호소에 보다 초점을 맞추어야 할 것으로 사료된다.

Keywords

References

  1. 농업기반공사. 2000. 농업생산기반정비사업통계연보. 농림부.
  2. 라긍환, 이학영, 김현우. 2008. 인공호수(옥정호)내 동물플랑크톤 동태 및 군집 여과율의 수직적 변화. 환경생물. 26:392-401.
  3. 서화중. 1978. 신축 인공호의 수질본태와 오화진행에 관한 위생화학적연구 -영산강 상류, 광주호, 나주호, 장성호를 중심으로-. 한국육수학회지. 11:67-79.
  4. 水野壽彦. 1978. 日本淡水プランクトン鑑.育社保. 351pp.
  5. 엄성화, 황순진. 2006. 팔당호 생태계에서 동물플랑크톤과 식물플랑크톤의 섭식관계. 한국육수학회지. 39:390-401.
  6. 유광일, 임병진, 최청일. 1987. 영산호의 동물플랑크톤 군집의 생태학적 연구. 한국육수학회지. 20:61-72.
  7. 이재연, 이재훈, 신경훈, 황순진, 안광국. 2007. 우리나라 농업용 저수지의 영양상태 및 수질 특성. 한국육수학회지. 40:223-233.
  8. 이지민, 이정준, 박종근, 이정호, 장천영, 윤성명. 2005. 대청호 남조류 대발생시기의 동물플랑크톤相및 Microcystis aeruginosa와 물벼룩류 개체군 변동의 상관관계. 한국육수학회지. 38:146-159.
  9. 이학동, 강병찬, 김민영. 1994. 예당호 수질의 계절별 변화에 대하여. 한국육수학회지. 27:219-226.
  10. 전지홍, 윤춘경, 함종화, 김호일, 황순진. 2002. 농업용 저수지의 물리적 인자가 수질에 미치는 영향. 한국육수학회지. 35:28-35.
  11. 鄭濬. 1993. 韓國淡水藻類圖鑑. 아카데미서적. 496pp.
  12. 조현영, 홍사욱. 1970. 저수지의 육수학적 연구. 한국육수학회지. 3:5-9.
  13. 최선화, 김호일. 2002. 우리나라 수자원과 농업용수 수질오염 실태. 농어촌과 환경. 12:93-103.
  14. Anderssen T and DO Hessen. 1991. Carbon, nitrogen and phosphorous content of freshwater zooplankton. Limnol. Oceanogr. 36:807-814. https://doi.org/10.4319/lo.1991.36.4.0807
  15. Auer B, U Elzer and H Arndt. 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J. Plank. Res. 26:697-709. https://doi.org/10.1093/plankt/fbh058
  16. Bonecker CC, MY Nagae, MCM Bletller, LFM Velho and FA Lansac-Tôha. 2007. Zooplankton biomass in trophical reservoirs in southern Brazil. Hydrobiologia. 579:115-123. https://doi.org/10.1007/s10750-006-0391-x
  17. Burgi H and P Stadelmann. 2002. Change of phytoplankton composition and biodiversity in Lake Sempach before and during restoration. Hydrobiologia. 469:33-48. https://doi.org/10.1023/A:1015575527280
  18. Chon TS, YS Park, KH Moon and EY Cha. 1996. Patternizing communities by using an artificial neural network. Ecol. Modelling 90:69-78. https://doi.org/10.1016/0304-3800(95)00148-4
  19. Dumont HJ, I Van De Velde and S Dumont. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthods of continental waters. Oecologia. 19:75-97. https://doi.org/10.1007/BF00377592
  20. Einsle U. 1993. Crustacea, Copepoda, Calanoida und Cyclopoida. Susswasswefauna von Mitteleuropa, vol. 8, part 4-1. Gustav Fisher Verlag, Stuttugart.
  21. Ejsmont-Karabin J. 1998. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydrobiol. 45:513-522.
  22. Fielding AH. 1999. Machine Learning Methods for Ecological Applications. Kluwer Academic Publishers, Massachusetts.
  23. Fillery IR, JR Simpson and SK Datta. 1986. Contribution on ammonia volatilization to total nitrogen loss after application of urea to wetland rice fields. Fertilizer Research 8:193-202. https://doi.org/10.1007/BF01048620
  24. Havens KE, TL East, J Marcus, P Essex, B Bolan, S Raymond and JR Beaver. 2000. Dynamics of the exotic Daphnia lumholtzii and native macro-zooplankton in a subtrophical chain-of-lakes in Florida, USA. Freshwater Biol. 45:21-32. https://doi.org/10.1046/j.1365-2427.2000.00614.x
  25. Jeong KS, DK Kim, A Pattnaik, K Bhatta, B Bhandari and GJ Joo. 2008. Patterning limnological characteristics of the Chilika lagoon (India) using a self-organizing map. Limnology 9:231-242. https://doi.org/10.1007/s10201-008-0243-7
  26. Jeong KS, DK Kim, TS Chon and GJ Joo. 2005. Machine learning application to the Korean freshwater ecosystems. Kor. J. Ecology 28:405-415. https://doi.org/10.5141/JEFB.2005.28.6.405
  27. Kim HW, GJ Joo and N Walz. 2000. Differences of zooplankton development along a lake and a river stretch of the river spree (Germany). Korean J. Limnol. 33:197-205.
  28. Kim HW, SJ Hwang, KH Chang, GJ Joo and N Walz. 2002. Longitudinal difference in zooplankton grazing on phytoand bacterioplankton in the Nakdong River (Korea). Int. Rev. Hydrobiol. 87:281-293. https://doi.org/10.1002/1522-2632(200205)87:2/3<281::AID-IROH281>3.0.CO;2-V
  29. Kobayashi T, P Gibbs, PI Dixon and RJ Shiel. 1996. Grazing by a river zooplankton community: Importance of microzooplankton. Mar. Freshwat. Res. 47:1025-1036. https://doi.org/10.1071/MF9961025
  30. Kohonen T. 1998. The self-organizing map. Neurocomputing: 1-6. https://doi.org/10.1016/S0925-2312(98)00030-7
  31. Kohonen T, J Hynninen, J Kangas and J Laaksonen. 1996. SOM PAK: The self-organizing map program package. Helsinki University of Technology.
  32. Koste W. 1978. Rotatoria. Die Radertiere Mitteleuropes begrunder von Max Voigt, 2nd edn., Vol. 1. Textband, 673p., Vol. 2. Tafelband, 234p., Borntraeger, Stuttgart.
  33. Krebs CJ. 2001. Ecology-The Experimental Analysis of Distribution and Abundance (5th eds.). Benjamin Cummings, San Francisco.
  34. Lampert W and U Sommer. 1993. Limnookologie. Thieme Verlag. Stuttgart.
  35. Lek S, JL Giraudel and JF Guegan. 2000. Neuronal networks: algorithms and architectures for ecologists and evolutionary ecologists. pp.3-27. In Artificial Neuronal Networks (Lek S and JF Guegan, eds.). Application to Ecology and Evolution. Springer-Verlag, Berlin.
  36. Mullin MM, PR Sloan and RW Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11:307-310. https://doi.org/10.4319/lo.1966.11.2.0307
  37. Pace ML and JD Orcutt. 1981. Relative importance of protozoans, rotifers and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26:822-830. https://doi.org/10.4319/lo.1981.26.5.0822
  38. Smirnov NN and BV Timms. 1983. A revision of the Australian Cladocera (Crustacean). Rec. Aust. Mus. Suppl. 1:1-132. https://doi.org/10.3853/j.0812-7387.1.1983.103
  39. Spearman C. 1987. The proof and measurement of association between two thing. Am. J. Psychiat. 15:72-101.
  40. Strathmann RR. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12:411-418. https://doi.org/10.4319/lo.1967.12.3.0411
  41. WAMIS. 2010. http://water.nier.go.kr/front/waterEasy/polic01.jsp.
  42. Zar JH. 2001. Biostatistical Analysis. Prentice Hall, NJ.
  43. Zingel P. 1999. Pelagic ciliated protozoa in shallow eutrophic lake: community structure and seasonal dynamics. Arch. Hydrobiol. 146:495-511. https://doi.org/10.1127/archiv-hydrobiol/146/1999/495