Browse > Article

Assessing the Plankton Dynamics in Lakes and Reservoirs Ecosystem in the Southwestern Parts of Korea  

Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University)
La, Geung-Hwan (Department of Environmental Education, Sunchon National University)
Jeong, Kwang-Seuk (Department of Biological Sciences, Pusan National University)
Park, Jong-Hwan (Yeongsan River Environmental Research Center)
Huh, Yu-Jung (Yeongsan River Environmental Research Center)
Kim, Sang-Don (Yeongsan River Environmental Research Center)
Na, Jeong-Eun (Department of Biological Science, Chonnam National University)
Jung, Myoung-Hwa (Department of Biological Science, Chonnam National University)
Lee, Hak-Young (Department of Biological Science, Chonnam National University)
Publication Information
Korean Journal of Environmental Biology / v.28, no.2, 2010 , pp. 86-94 More about this Journal
Abstract
This study compares and contrasts the dynamics of plankton in 31 temperate lakes and reservoirs, and considers particularly the biomass ratio of zooplankton to phytoplankton and ecological model application. A total of 89 species of zooplankton were identified (70 rotifers, 14 cladocerans and 5 copepods) and a total of 554 species of phytoplankton were identified (176 Bacillariophyceae, 237 Chlorophyceae, 68 Cyanophyceae, and 73 other algal taxa). The total plankton abundance and species diversity were showed distinctive spatial and seasonal variation. Annual average phytoplankton density was $7,350{\pm}15,592$ cells $mL^{-1}$ (n=124), and the lowest was $855{\pm}448$ cells $mL^{-1}$ (n=4), while the highest was $72,048{\pm}13,4631$ cells $mL^{-1}$ (n=4). For zooplankton, small rotifer groups dominated the study sites, and approximately 3~10 species appeared in the study sites. Statistical analysis and an ecological model application revealed that the size of reservoirs affected the structure size of plankton community, i.e. relatively large number of species were found in smaller reservoirs. From this result, we can conclude that management strategy for the reservoir environment has to be focused more on small-size reservoirs, in terms of plankton community ecology.
Keywords
zooplankton; phytoplankton; lakes; reservoirs; rotifers;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Mullin MM, PR Sloan and RW Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11:307-310.   DOI   ScienceOn
2 Pace ML and JD Orcutt. 1981. Relative importance of protozoans, rotifers and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26:822-830.   DOI   ScienceOn
3 Smirnov NN and BV Timms. 1983. A revision of the Australian Cladocera (Crustacean). Rec. Aust. Mus. Suppl. 1:1-132.   DOI
4 Koste W. 1978. Rotatoria. Die Radertiere Mitteleuropes begrunder von Max Voigt, 2nd edn., Vol. 1. Textband, 673p., Vol. 2. Tafelband, 234p., Borntraeger, Stuttgart.
5 Krebs CJ. 2001. Ecology-The Experimental Analysis of Distribution and Abundance (5th eds.). Benjamin Cummings, San Francisco.
6 Lampert W and U Sommer. 1993. Limnookologie. Thieme Verlag. Stuttgart.
7 Kim HW, GJ Joo and N Walz. 2000. Differences of zooplankton development along a lake and a river stretch of the river spree (Germany). Korean J. Limnol. 33:197-205.
8 Lek S, JL Giraudel and JF Guegan. 2000. Neuronal networks: algorithms and architectures for ecologists and evolutionary ecologists. pp.3-27. In Artificial Neuronal Networks (Lek S and JF Guegan, eds.). Application to Ecology and Evolution. Springer-Verlag, Berlin.
9 Kohonen T. 1998. The self-organizing map. Neurocomputing: 1-6.   DOI   ScienceOn
10 Kohonen T, J Hynninen, J Kangas and J Laaksonen. 1996. SOM PAK: The self-organizing map program package. Helsinki University of Technology.
11 Kim HW, SJ Hwang, KH Chang, GJ Joo and N Walz. 2002. Longitudinal difference in zooplankton grazing on phytoand bacterioplankton in the Nakdong River (Korea). Int. Rev. Hydrobiol. 87:281-293.   DOI   ScienceOn
12 Einsle U. 1993. Crustacea, Copepoda, Calanoida und Cyclopoida. Susswasswefauna von Mitteleuropa, vol. 8, part 4-1. Gustav Fisher Verlag, Stuttugart.
13 Kobayashi T, P Gibbs, PI Dixon and RJ Shiel. 1996. Grazing by a river zooplankton community: Importance of microzooplankton. Mar. Freshwat. Res. 47:1025-1036.   DOI   ScienceOn
14 Havens KE, TL East, J Marcus, P Essex, B Bolan, S Raymond and JR Beaver. 2000. Dynamics of the exotic Daphnia lumholtzii and native macro-zooplankton in a subtrophical chain-of-lakes in Florida, USA. Freshwater Biol. 45:21-32.   DOI   ScienceOn
15 Jeong KS, DK Kim, A Pattnaik, K Bhatta, B Bhandari and GJ Joo. 2008. Patterning limnological characteristics of the Chilika lagoon (India) using a self-organizing map. Limnology 9:231-242.   DOI   ScienceOn
16 Jeong KS, DK Kim, TS Chon and GJ Joo. 2005. Machine learning application to the Korean freshwater ecosystems. Kor. J. Ecology 28:405-415.   과학기술학회마을   DOI
17 Dumont HJ, I Van De Velde and S Dumont. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthods of continental waters. Oecologia. 19:75-97.   DOI
18 Ejsmont-Karabin J. 1998. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydrobiol. 45:513-522.
19 Fielding AH. 1999. Machine Learning Methods for Ecological Applications. Kluwer Academic Publishers, Massachusetts.
20 Fillery IR, JR Simpson and SK Datta. 1986. Contribution on ammonia volatilization to total nitrogen loss after application of urea to wetland rice fields. Fertilizer Research 8:193-202.   DOI
21 이학동, 강병찬, 김민영. 1994. 예당호 수질의 계절별 변화에 대하여. 한국육수학회지. 27:219-226.
22 전지홍, 윤춘경, 함종화, 김호일, 황순진. 2002. 농업용 저수지의 물리적 인자가 수질에 미치는 영향. 한국육수학회지. 35:28-35.   과학기술학회마을
23 鄭濬. 1993. 韓國淡水藻類圖鑑. 아카데미서적. 496pp.
24 조현영, 홍사욱. 1970. 저수지의 육수학적 연구. 한국육수학회지. 3:5-9.
25 최선화, 김호일. 2002. 우리나라 수자원과 농업용수 수질오염 실태. 농어촌과 환경. 12:93-103.
26 Burgi H and P Stadelmann. 2002. Change of phytoplankton composition and biodiversity in Lake Sempach before and during restoration. Hydrobiologia. 469:33-48.   DOI   ScienceOn
27 Anderssen T and DO Hessen. 1991. Carbon, nitrogen and phosphorous content of freshwater zooplankton. Limnol. Oceanogr. 36:807-814.   DOI   ScienceOn
28 Auer B, U Elzer and H Arndt. 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J. Plank. Res. 26:697-709.   DOI   ScienceOn
29 Bonecker CC, MY Nagae, MCM Bletller, LFM Velho and FA Lansac-Tôha. 2007. Zooplankton biomass in trophical reservoirs in southern Brazil. Hydrobiologia. 579:115-123.   DOI   ScienceOn
30 Chon TS, YS Park, KH Moon and EY Cha. 1996. Patternizing communities by using an artificial neural network. Ecol. Modelling 90:69-78.   DOI   ScienceOn
31 엄성화, 황순진. 2006. 팔당호 생태계에서 동물플랑크톤과 식물플랑크톤의 섭식관계. 한국육수학회지. 39:390-401.   과학기술학회마을
32 유광일, 임병진, 최청일. 1987. 영산호의 동물플랑크톤 군집의 생태학적 연구. 한국육수학회지. 20:61-72.
33 Strathmann RR. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12:411-418.   DOI   ScienceOn
34 이재연, 이재훈, 신경훈, 황순진, 안광국. 2007. 우리나라 농업용 저수지의 영양상태 및 수질 특성. 한국육수학회지. 40:223-233.   과학기술학회마을
35 이지민, 이정준, 박종근, 이정호, 장천영, 윤성명. 2005. 대청호 남조류 대발생시기의 동물플랑크톤相및 Microcystis aeruginosa와 물벼룩류 개체군 변동의 상관관계. 한국육수학회지. 38:146-159.   과학기술학회마을
36 水野壽彦. 1978. 日本淡水プランクトン鑑.育社保. 351pp.
37 농업기반공사. 2000. 농업생산기반정비사업통계연보. 농림부.
38 라긍환, 이학영, 김현우. 2008. 인공호수(옥정호)내 동물플랑크톤 동태 및 군집 여과율의 수직적 변화. 환경생물. 26:392-401.   과학기술학회마을
39 서화중. 1978. 신축 인공호의 수질본태와 오화진행에 관한 위생화학적연구 -영산강 상류, 광주호, 나주호, 장성호를 중심으로-. 한국육수학회지. 11:67-79.
40 Spearman C. 1987. The proof and measurement of association between two thing. Am. J. Psychiat. 15:72-101.
41 WAMIS. 2010. http://water.nier.go.kr/front/waterEasy/polic01.jsp.
42 Zar JH. 2001. Biostatistical Analysis. Prentice Hall, NJ.
43 Zingel P. 1999. Pelagic ciliated protozoa in shallow eutrophic lake: community structure and seasonal dynamics. Arch. Hydrobiol. 146:495-511.   DOI