• Title/Summary/Keyword: Small chamber

Search Result 621, Processing Time 0.026 seconds

Characteristic comparison of Andersen and total suspended particulate samplers in a particulate matter generation chamber (입자 발생 챔버를 이용한 Andersen과 총분진 시료채취기의 특성 비교)

  • Park, Ju-Myon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.177-184
    • /
    • 2008
  • The purpose of this study was to compare the performance characteristics of Andersen and total suspended particulate (TSP) samplers in terms of particle size distribution (PSD) and mass sampling efficiency. In the present study, two Andersen and four TSP samplers were selected and tested to quantitatively estimate human exposure to fly ash representing industrial particulate matter (PM) in a carefully controlled chamber. The PSD characteristics, a mass median aerodynamic diameter and a geometric standard deviation, were found from the sampled PM of airborne samplers in the chamber. An Andersen sampler was compared with a TSP sampler quantified by a coulter counter multisizer, as a reference sampler, to describe the correlation of mass sampling efficiencies between two types of samplers. Overall results indicate that Andersen samplers overestimated small PM due to particle bounce phenomena between impaction stages. There was reasonably good correlation ($R^2$ = 0.89 and 0.91) between the mass sampling efficiencies of Andersen and TSP samplers during the two tests. However, the lower values of slope (0.71 and 0.72) in two tests showed that the Andersen sampler underestimated PM (> AD $10.1\;{\mu}m$) with sufficient inertia due to a relatively lower Andersen inlet velocity at 0.8 m/s comparing with the operating air velocity at 2.1 m/s in the sampling zone of a chamber.

Estimation of Secondary Flow Pressure of an Annular Injection Type Supersonic Ejector Using Fabri-Choking (패브리-초킹을 이용한 환형분사 초음속 이젝터 부유동 압력 예측)

  • Kim Sehoon;Jin Jungkun;Kwon Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.405-408
    • /
    • 2005
  • A theoretical analysis is developed for an annular injection type supersonic ejector having a second-throat downstream under the assumption that the Fabri-chocking is placed in mixing chamber. Non-mixing theory is applied to formulate secondary flow pressure in the region between inlet of the mixing chamber and Fabri-chocking. To describe the shock standing at the inlet of the mixing chamber, two dimensional oblique shock relations are used and it is assumed that the shock affects only primary flow at Fabri-chocking plane. In conclusion, it agrees well with experiments in case of small contracting angle of mixing chamber, under 4degrees.

  • PDF

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.103-115
    • /
    • 2013
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine have been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

The Study on Correction Factor of a Small Scale Reverberation Chamber to Estimate Transmission Loss (소형 잔향실의 확산 음장 보정 계수 측정 연구)

  • Kim, Tae Min;Kim, Da Rae;Kim, Jeung Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.960-965
    • /
    • 2014
  • Transmission loss of specimen is calculated by measuring energy of incident and transmission and using reverberant room of large size. But normal measurement of transmission loss has trouble because it is actually demanded that large area and specimen of certain size is satisfied with condition of diffused sound field. Especially, in case of mechanical component, interested frequency band is mid-frequency band between 500 ~ 2k Hz, and it is used to be available to minimize a reverberation chamber under conditions satisfying acoustic one because production of specimen for transmission loss measurement has limit. But, as in semi-reverberation room, it is difficult to satisfy condition of diffuse sound field and modification factor is applied to complement that. Correction factor when measuring transmission loss using semi-reverberation chamber is required accuracy because it works as main factor determining reliability of reuslts on transmission loss. In this study, it is analyzed that an effect on correction factor based on varying materials and sizes of specimens in order to deduction of it. Also It is confirmed that applied by elicited correction factor with actual railway vehicle's floor has reliability.

  • PDF

Estimation of Secondary Flow Pressure of an Annular-Injection-Type Supersonic Ejector Using Fabri Choking (패브리 초킹을 이용한 환형분사 초음속 이젝터의 부유동 압력 예측)

  • Kim Sehoon;Kwon Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • A theoretical analysis is developed for an annular-injection-type supersonic ejector having a second-throat downstream the ejector under the assumption that the Fabri choking is placed in mixing chamber. Non mixing theory is applied to formulate secondary flow pressure in the region between inlet of the mixing chamber and Fabri choking. To describe the shock standing at the inlet of the mixing chamber, two dimensional oblique shock relations are used and it is assumed that the shock affects only primary flow at Fabri choking plane. Physical constraint, which is that primary flow pressure and secondary flow pressure are same at Fabri choking plane, is added. In conclusion, it agrees well with experiments in case of small contracting angle of mixing chamber, under 4degrees.

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.603-615
    • /
    • 2012
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine has been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

  • PDF

An Experimental Study on the Characteristics of Sodium Fires (나트륨 화재 특성의 실험적 연구)

  • Bae, Jae-Heum;Ahn, Do-Hee;Kim, Young-Cheol;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.471-483
    • /
    • 1994
  • A sodium fire facility with a test chamber of 1.7㎥ volume was constructed and operated to carry out experiments of sodium fires such as pool, spray, and columnar fires which might take place in sodium-related facilities. The experimental results of pool fires showed that the increase of temperature and pressure in the test chamber was much smaller than that of spray and columnar fires even though their amount of sodium injection in the chamber was much larger compared to other types of fires. And it was found in pool fires that the temperatures of sodium pool and the gas temperature in the test chamber had been maintained much longer than other types of fires, and that the chamber pressure had come to vacuum due to depletion of the oxygen for a large amount of sodium injection in the chamber. The experimental results of spray fires showed that sprayed sodium of small particles instantly reacted with oxygen, and that its reaction heat increased gas temperature and pressure of the test chamber rapidly and decreased them shortly. And the maximum gas temperature and pressure of the test chamber in spray fires ore greatly changed according to the inlet sodium temperature in the test chamber. The characteristics of the columnar fires were almost similar to those of spray fires, but the maximum temperature and pressure of the test chamber were much smaller even for a large amount of sodium injection. And it was shown in spray and columnar fires that the temperatures at each measurement position in the test chamber were quite different due to the instantaneous sodium oxidation in comparision with pool fires. Finally, the graphex powder was proved to be a very effective extinguisher against sodium pool fires.

  • PDF

Study on the Characteristics of Response Correction Factor of Ionization Chamber in RW3 Solid Phantom for High Energy X-rays (RW3 고체팬텀에서 고에너지 X-선에 대한 전리함 반응보정인자의 특성에 관한 연구)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok;Kim, Bu-Gil
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.205-212
    • /
    • 2009
  • The response correction factor ( h) is a factor to convert the response of the chamber in solid phantom to the response in water. In RW3 solid phantom, the dependency of beam quality and depth for high energy X-rays are known characteristics, however the dependency of field size, SSD, and chamber type are unknown. In this work we have studied the unknown characteristics on the dependency of response correction factor. The farmer type chamber (FC65G) and small chamber (CC13) were used and two beam qualities of 6 and 15 MV were evaluated. The measured response correction factors at the depth of 5 cm and 10 cm were h = 1.015 and 1.021 for 6 MV X-rays, and h = 1.024 and 1.029 for 15 MV X-rays. In conclusion the response correction factor did not depend on the field size and SSD while depending on the beam quality and depth. In the chambers, there are small differences between the two chambers used in this study but we think additional study for more chambers should be required. The results in this study can be used for analyzing the measured values from ionization chamber dosimetry in RW3.

  • PDF

Study on establishment of emission cell test method for liquid phase building materials (방출셀을 이용한 액상건축자재 오염물질 방출시험방법 정립에 관한 연구)

  • Lim, Jungyun;Jang, Seongki;Seo, Sooyun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.191-200
    • /
    • 2009
  • The aim of this study was to evaluate and establish of emission test method for liquid phase building materials such as paint, adhesive, sealant by emission cell. A small-scale emission chamber and emission cell were used to evaluate emission of TVOC from paint, adhesive, sealant. The quantity of TVOC emission were measured by a gas chromatography/mass spectrometry (GC/MS). Background concentration of TVOC was below $10{\mu}g/m^3$ in the emission chamber and cell. Air tightness and recovery in chamber and cell showed good results. The recovery of thermal desorber for toluene and n-dodecane were about 120%. The repeatability of response factor and retention time in GC/MS below 30%. The method detection limit of VOCs ranged 0.04~8.82 ng. The concentration of TVOC emission using emission cell was 1.35~1.41 times higher than emission chamber. The correlation of TVOC emission using chamber and cell method was significantly high (r=0.91~0.97).

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.