• Title/Summary/Keyword: Small UAVs

Search Result 86, Processing Time 0.031 seconds

Lightweight Metallic Bipolar Plates of PEMFC for a Small Reconnaissance UAV (소형 정찰 UAV를 위한 고분자 전해질막 연료전지의 경량의 금속 분리판)

  • Kim, Ki-In;Lee, Jong-Kwang;Jang, Bo-Sun;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1031-1037
    • /
    • 2010
  • This paper proposed lightweight aluminum bipolar plates as an alternative for conventional graphite bipolar plates in fuel cell systems used as a power source for small reconnaissance UAVs. Since bipolar plates occupy more than 80% of the total weight of the fuel cell system, lightweight aluminum bipolar plates can improve the overall payload and flight time of the fuel cell UAV. The aluminum and graphite bipolar plates were fabricated to compare the performance of each of them. A 15% higher performance per weight was obtained from aluminum bipolar plates than the graphite bipolar plates. Also, the performance of a single cell using aluminum bipolar plates was evaluated under various operating conditions.

Conceptual Design for Small Solar Powered Uninhabited Aerial Vehicle (소형 태양광 무인항공기의 개념 설계)

  • Lee, Sang-Hyup;Park, Sang-Hyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • Several studies on the development for solar powered uninhabited aerial vehicles(UAVs) are under way as the use of the renewable energy becomes more and more important these days. This paper is for the conceptual design by a discrete and iterative method. An initial design point with 1.5 meter wing span is determined in the global design, which deploys the mass and energy balances among each component of UAV including solar cells and airframe. Then, the iteration for subsystems is carried out with the help of Vortex Lattice Method(VLM) to optimize the aircraft configuration and the solar power system. It is demonstrated in simulations that the optimized design increases the flight time from 62 to 120 minutes when the solar power system is installed. Also, the associated dynamic analysis reveals that the designed small aircraft has the acceptable stability and controllability.

Experimental Study on Tip Clearance Effects for Performance Characteristics of Ducted Fan

  • Raza, Iliyas;Choi, Hyun-Min;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.395-398
    • /
    • 2009
  • Currently, a new generation of ducted fan UAVs (Unmanned Aerial Vehicles) is under development for a wide range of inspection, investigation and combat missions as well as for a variety of civil roles like traffic monitoring, meteorological studies, hazard mitigation etc. The current study presents extensive results obtained experimentally in order to investigate the tip clearance effects on performance characteristics of a ducted fan for small UAV systems. Three ducted fans having different tip clearance gap and with same rotor size were examined under three different yawed conditions of calibrated slanted hot-wire probe. Three dimensional velocity flow fields were measured from hub to tip at outlet of the ducted fan. The analysis of data were done by PLEAT (Phase locked Ensemble Averaging Technique) and three non-linear differential equations were solved simultaneously by using Newton -Rhapson numerical method. Flow field characteristics such as tip vortex and secondary flow were confirmed through axial, radial and tangential velocity contour plots. At the same time, the effects of tip clearance on axial thrust and input power were also investigated by using wind tunnel measurement system. For enhancing the performance of ducted fan, tip clearance level should be as small as possible.

  • PDF

Development of Integrated Ground Support System for Integrated Flight Test of Small UAVs (무인항공기의 통합비행시험을 위한 통합형 지상지원시스템 개발)

  • Jeong, Jae-Hyeon;Lim, Byoung-Do;Kim, Sung-Su;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.800-806
    • /
    • 2012
  • This paper proposes design and development of the Integrated Ground Support System (IGSS) for the flight test of the Unmanned Aerial Vehicle (UAV), which combines ground support and ground control. The integrated flight test of the UAV is a necessary procedure to validate the functionality of the Unmanned Aerial System (UAS). In order to execute cost-effective and systematic flight tests, the IGSS is regarded as an inevitable infrastructure of UAS for small laboratories. The proposed IGSS has functions of ground control, radio communication, power generation, transportation and the maintenance of the UAV.

Design optimization of a fixed wing aircraft

  • Yayli, Ugur C.;Kimet, Cihan;Duru, Anday;Cetir, Ozgur;Torun, Ugur;Aydogan, Ahmet C.;Padmanaban, Sanjeevikumar;Ertas, Ahmet H.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.65-80
    • /
    • 2017
  • Small aircrafts, Unmanned Aerial Vehicles (UAVs), are used especially for military purposes. Because landing fields are limited in rural and hilly places, take-off or landing distances are very important. In order to achieve a short landing or take-off distance many parameters have to be considered, for instance the design of aircrafts. Hence this paper represents a better design to enlarge the use of fixed wing aircrafts. The document is based on a live and simulated experiments. The various components of designed aircraft are enhanced to create short take-off distance, greater lift and airflow without the need for proper runway area. Therefore, created aerodynamics of the remotely piloted aircraft made it possible to use fixed wing aircrafts in rural areas.

An obstacle avoidance system of an unmanned aerial vehicle using a laser range finder

  • Kim, Hyun;Miwa, Masafumi;Shim, Joonhwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.737-742
    • /
    • 2013
  • Recently, unmanned aircrafts for safe measurement in hazardous locations have been developed. In a method of operation of unmanned aircraft vehicles (UAV), there are two methods of manual control and automatic control. Small UAVs are used for low altitude surveillance flights where unknown obstacles can be encountered. Obstacle avoidance is one of the most challenging tasks which the UAV has to perform with high level of accuracy. In this study, we used a laser range finder as an obstacle detector in automatic navigation of unmanned aircraft to patrol the destination automatically. We proposed a system to avoid obstacles automatically by measuring the angle and distance of the obstacle using the laser range finder.

A Study on Performance Simulation of an Reciprocating Engine for Small Long Endurance Unmanned Aerial Vehicles (소형 장기체공 무인기용 왕복엔진 성능 예측 시뮬레이션 연구)

  • Chang Sung-Ho;Koo Sam-Ok;Shin Younggy
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.820-827
    • /
    • 2005
  • Development of an engine with good fuel economy is very important for successful implementation of long endurance miniature UAVs (unmanned aerial vehicles). In the study, a 4-stroke glow-plug engine was modified to a gasoline-fueled spark-ignition engine. Engine tests measuring performance and friction losses were conducted to tune a simulation program for performance prediction. It has been found that excessive friction losses are caused by insufficient lubrication at high speeds. The simulation program predicts that engine power and fuel economy get worse with high altitude due to increasing portion of friction losses. The simulation results suggest quantitative guidelines for further development of a practical engine.

Trailing edge geometry effect on the aerodynamics of low-speed BWB aerial vehicles

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2019
  • The influence of different planform parameters on the aerodynamic performance of large-scale subsonic and transonic Blended Wing Body (BWB) aircraft have gained comprehensive research in the recent years, however, it is not the case for small-size low subsonic speed Unmanned Aerial Vehicles (UAVs). The present work numerically investigates aerodynamics governing four different trailing edge geometries characterizing BWB configurations in standard flight conditions at angles of attack from $-4^{\circ}$ to $22^{\circ}$ to provide generic information that can be essential for making well-informed decisions during BWB UAV conceptual design phase. Simulation results are discussed and comparatively analyzed with useful implications for formulation of proper mission profile specific to every BWB configuration.

Semantic Segmentation of Heterogeneous Unmanned Aerial Vehicle Datasets Using Combined Segmentation Network

  • Ahram, Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.87-97
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs) can capture high-resolution imagery from a variety of viewing angles and altitudes; they are generally limited to collecting images of small scenes from larger regions. To improve the utility of UAV-appropriated datasetsfor use with deep learning applications, multiple datasets created from variousregions under different conditions are needed. To demonstrate a powerful new method for integrating heterogeneous UAV datasets, this paper applies a combined segmentation network (CSN) to share UAVid and semantic drone dataset encoding blocks to learn their general features, whereas its decoding blocks are trained separately on each dataset. Experimental results show that our CSN improves the accuracy of specific classes (e.g., cars), which currently comprise a low ratio in both datasets. From this result, it is expected that the range of UAV dataset utilization will increase.

Performance Enhancement of the Attitude Estimation using Small Quadrotor by Vision-based Marker Tracking (영상기반 물체추적에 의한 소형 쿼드로터의 자세추정 성능향상)

  • Kang, Seokyong;Choi, Jongwhan;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.444-450
    • /
    • 2015
  • The accuracy of small and low cost CCD camera is insufficient to provide data for precisely tracking unmanned aerial vehicles(UAVs). This study shows how UAV can hover on a human targeted tracking object by using CCD camera rather than imprecise GPS data. To realize this, UAVs need to recognize their attitude and position in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for an UAV to estimate of his attitude by environment recognition for UAV hovering, as one of the best important problems. In this paper, we describe a method for the attitude of an UAV using image information of a maker on the floor. This method combines the observed position from GPS sensors and the estimated attitude from the images captured by a fixed camera to estimate an UAV. Using the a priori known path of an UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a marker on the floor and the estimated UAV's attitude. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the UAV. The Kalman filter scheme is applied for this method. its performance is verified by the image processing results and the experiment.