• Title/Summary/Keyword: Small Punch

Search Result 163, Processing Time 0.024 seconds

Study of Flexible Forming Process Involving the Use of Sectional Flexible Die for Sheet Material (분할가변금형을 이용한 박판의 가변성형공정 연구)

  • Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.299-305
    • /
    • 2010
  • In general, the flexible forming die that has been used in the flexible forming process has the identical punch size; hence, its flexibility is relatively low because the range of allowable curvature radii is limited due to the uniform punch tip radius. Hence, a conceptual design of a sectional flexible die is presented for enhancing the flexibility of the forming process. Two punches of different sizes are used to configure the arbitrary forming surface. For a forming region with a relatively large curvature radius, a large punch array block is used; on the other hand, for the forming regions with small curvature radii, a small punch block is used. The cross-sectional profiles are compared with the target shape for evaluating the effectiveness of the process. Consequently, it is confirmed that the sectional flexible die can be used along with a combination of punch blocks of different sizes for manufacturing objective surfaces of complex shapes.

Small Punch Creep Behavior Analysis for Assessment of Creep Properties (크리프 물성 평가를 위한 소형 펀치 크리프 해석)

  • Im, Jiwoo;Kim, Bum-Joon;Kim, Moon-K;Lim, Byeong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.965-973
    • /
    • 2010
  • The small punch creep (SPC) test has recently received much attention as a new alternative to the conventional uniaxial creep test because it needs only a miniature-sized specimen directly detached from an operating system or component without any serious sampling damages. However, it is difficult to obtain the equivalent uniaxial creep data directly from the SPC data. As a specimen is deformed by a punch in the SPC test, the test result is sensitive to the friction between them. Finite element analyses with various friction coefficients was performed and showed a tendency of increased SPC life with an increased friction coefficient. The necking position predicted by the SPC simulation with a proper friction coefficient showed good agreement with that observed from the real SPC test. Finally, a noble method to convert the SPC load and displacement rate into the equivalent uniaxial creep stress and strain rate, respectively, was established in this study.

A Study on the Stress Corrosion Cracking Evaluation for Weld Joint of Steel by Using Miniaturized Small Specimen (미소시험편에 의한 강 용접부의 응력부식 균열 평가에 관한 연구)

  • 유효선
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.63-75
    • /
    • 1994
  • The conventional SCC(stress corrosion cracking) test methods have much difficulty in evaluating the SCC behaviors of the localized zone like HAZ, bond line and weld metal because of the specimen size. Accordingly, the purpose of this paper is to develop the new SCC test method of the welded zone by evaluating the SCC susceptibility on parent metal and various microstructures of the welded zone by SP(small punch) test method using miniaturized small specimen and SSRT(slow strain rate test) method(SP-SSRT). Besides, this study is to verify the efficiency of the SP-SSRT results through AE(acoustic emission) test which is a useful technique to monitor the microfracture processes of the material. From the results of SCC susceptibility, SEM observation and AE test, it can be concluded that the SP-SSRT test using miniaturized small specimen(10mm*10mm*0.5mm) will be a good test method to evaluate the SCC susceptibility on the local zone such as the welded zone.

  • PDF

Evaluation of cryogenic mechanical properties of aluminum alloy using small punch test

  • Hojun Cha;Seungmin Jeon;Donghyeon Yoon;Jisung Yoo;Seunggun Lee;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.70-74
    • /
    • 2023
  • The Small Punch Test (SPT) was developed to evaluate the softening and embrittlement of materials such as power plants and nuclear fusion reactors by taking samples in the field. Specimens used in the SPT are very thin and small disk-shaped compared to specimens for general tensile test, and thus have economic advantages in terms of miniaturization and repeatability of the test. The cryogenic SPT can also be miniaturized and has a significantly lower heat capacity than conventional universal test machines. This leads to reduced cooling and warm-up times. In this study, the cryogenic SPT was developed by modifying the existing room temperature SPT to be cooled by liquid nitrogen using a super bellows and a thermal insulation structure. Since the cryogenic SPT was first developed, basic experiments were conducted to verify the effectiveness of it. For the validation, aluminum alloy 6061- T6 specimens were tested for mechanical properties at room and cryogenic temperature. The results of the corrected tensile properties from the SPT experiment results were compared with known room temperature and cryogenic properties. Based on the correction results, the effectiveness of the cryogenic SPT test was confirmed, and the surface fracture characteristics of the material were analyzed using a 3d image scanner. In the future, we plan to conduct property evaluation according to the development of various alloy materials.

Failure analysis of powder compacting punches made of powder metallurgy high speed steels (분말고속도공구강으로 만든 분말성형펀치의 손상분석)

  • 홍성현
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.78-84
    • /
    • 2000
  • P/M high speed steels(1.28% C, 4.20% Cr, 6.40% W, 5.00% Mo, 3.10% V, bal. Fe) from two different venders were applied to powder compacting punch. The test results show that failure lifes were very different between two punches. These were no difference in volume fraction and mean size of carbides(MC or M6C) but non-metallic inclusions in two punches. Small amount of non-metallic inclusion in the punch did not greatly affect impact energy and transverse rupture strength (TRS). But, fatigue life was drastically decreased by non-metallic inclusions. These results show that fatigue failure was initated around non-metallic inclusion by cyclic load and the fatigue life was greatly affected by the presence of non-metallic inclusions in the punch.

  • PDF

A Study on the Burr Minimization in Punching Process Based on Micro Die Alignment (다이의 미세정렬을 통한 전단 버의 최소화에 관한 연구)

  • 홍남표;신용승;신홍규;김헌영;김병희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.70-75
    • /
    • 2004
  • The shearing process for the sheet metal is normally used in the precision elements such as a lead frame of IC chips. In these precision elements, the burr formation brings a bad effect on the system assembly and demands the additional deburring process. In this paper, we developed the small size precision punching system to investigate burr formation mechanism and to present kinematically punch-die aligning methodology between the rectangular shaped punch and die. The punch is driven by an air cylinder and the sheet metal is moving on the X-Y table system which is driven by two stepping motors. The whole system is controlled by microprocessor and is communicated with each other by RS232C serial communication protocol. Punching results are measured manually using the SEM photographs and are compared aligning result with miss aligning one.

Study on Deformation Characteristics of Hole Expansion Test and Its Applicability (구멍확장시험의 변형특성 및 활용성 연구)

  • Han, S.S.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.154-158
    • /
    • 2019
  • The hole expansion tests using conical punch, flat punch or hemispherical punch are widely used for stretch flangeability verification of HSS. In this study, we investigate the strain distribution on the shear edges of the hole expansion test using grid marking and a projector. A small crack at the edge is distributed, resulting in a large gap between the HER and the crack strain. The strain distribution at the edges is irregular due to anisotropy of sheet metal. While an edge perpendicular to the rolling direction indicate a lower strain level compared to an edge parallel to the rolling direction, edge cracks occur at the edge perpendicular to the rolling direction. To predict the manifestation of edge cracks in FE analysis, the result of the hole expansion test with a crack strain measurement may well be a better tool than FLD. In this case, the level of strain and the direction of the edge relative to the rolling direction should be well considered.

Evaluation of Tensile Properties in Small Punch Test Using Finite Element Analysis (유한요소해석을 이용한 소형펀치시험에서의 인장물성평가)

  • Lee, Jae-Bong;Kim, Min-Chul;Park, Jai-Hak;Lee, Bong-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.31-36
    • /
    • 2003
  • In this study a relationship between SP curves and tensile properties was investigated by FE analysis on SP test with various assumed tensile properties. For the accuracy of FE analysis, SP test and tensile test were performed and those results were compared with FE analysis results. The yield load(Py) defined from the intersection point of two lines tangent to the elastic bending region and plastic bending region. And it was related specifically with yield stress(${\sigma}_0$) in FE analysis result curves. The slopes of FE analysis result curves normalized by yield stress(${\sigma}_0$) reflected the change of tensile properties regardless of yield stress(${\sigma}_0$) variation. Empirical relations were derived from these results. Tensile properties from these relations showed good agreement in FE analysis curve and tested curve.

  • PDF