Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.11.965

Small Punch Creep Behavior Analysis for Assessment of Creep Properties  

Im, Jiwoo (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
Kim, Bum-Joon (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
Kim, Moon-K (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
Lim, Byeong-Soo (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.11, 2010 , pp. 965-973 More about this Journal
Abstract
The small punch creep (SPC) test has recently received much attention as a new alternative to the conventional uniaxial creep test because it needs only a miniature-sized specimen directly detached from an operating system or component without any serious sampling damages. However, it is difficult to obtain the equivalent uniaxial creep data directly from the SPC data. As a specimen is deformed by a punch in the SPC test, the test result is sensitive to the friction between them. Finite element analyses with various friction coefficients was performed and showed a tendency of increased SPC life with an increased friction coefficient. The necking position predicted by the SPC simulation with a proper friction coefficient showed good agreement with that observed from the real SPC test. Finally, a noble method to convert the SPC load and displacement rate into the equivalent uniaxial creep stress and strain rate, respectively, was established in this study.
Keywords
alloys; creep; recovery; tensile test;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 K. B. Yoon et al., Trans. of the KSME A. 25, 1493 (2001).
2 J. H. Baek, C. H. Han, S. H. Kim, C. B. Lee, and D. H. Hahn, J. Kor. Inst. Met. & Mater. 47, 209 (2009).
3 I. H. Jung, W. G. Kim, S. N. Yin, W. S. Ryu, and S. J. Kim, J. Kor. Inst. Met. & Mater. 47, 283 (2009).
4 B. J. Kim, H. J. Kim, and B. S. Lim, Met. Mater. Int. 14, 391 (2008).   DOI   ScienceOn
5 J. W. Im, B. J. Kim, M. K. Kim, N. H. Cho, and B. S. Lim, Transferability and applicability of current mechanics and approaches, p.101, East China University of Science and Technology Press (2009).
6 X. Ling, Y. Zheng, Y. You, and Y. Chen, Int. J. Pres. Ves. & Piping. 84, 304 (2007).   DOI   ScienceOn
7 G. C. Stratford, F. Di Persio, and J. Klaput, Proc. 11th Int. Conf. on 'Fracture', Turin, Italy (2005).
8 J. D. Parker and J. D. James, ASME PVP-Developments in a Progressing Technology 279, 167 (1994).
9 B. Ule et al., Tech. Law. Insur. 4, 283 (1999).   DOI   ScienceOn
10 K. B. Yoon, T. G. Park, S. H. Shim, and I. S. Jeong, Transac. of the KSME (A). 25, 1493 (2001).
11 E. Fluery and J. S. Ha, Int. J. Pres. Ves. Pip. 75, 699 (1998).   DOI   ScienceOn
12 R. Hurst, V. Bicego, and J. Foulds, Proceedings of CREEP8, p.1, San Antonio, Texas (2007).
13 B. J. Kim, M. K. Kim, H. T. Dung, and B. S. Lim, Kor. J. Met. & Mater. 48, 19 (2010).   DOI   ScienceOn
14 B. J. Kim and B. S. Lim, Acta. Mech. Sol. Sin. 21, 312 (2008).   DOI
15 B. J. Kim, B. S. Lim, and D. H. Ki, IJMPB. 20, 4231 (2006).   DOI   ScienceOn
16 R. Sturm and Y. Li, Materiali in Tehnologije. 40, 49 (2006).
17 Z. Yang and Z. Wang, Int. J. Pres. Ves. & Piping. 80, 397 (2003).   DOI   ScienceOn
18 R. W. Evans and M. Evans, Mater. Sci. and Tech. 22, 1155 (2006)   DOI   ScienceOn
19 P. C. Zhai, T. Hashida, S. Komazaki, and Q. J. Zhang, J. of Testing and Evaluation. 32, 298 (2004).
20 P. Dymacek and K. Milicka, Strength of Materials. 40, 24 (2008).   DOI   ScienceOn
21 P. Dymacek and K. Milicka, Mat. Sci. and Eng. A 510, 444 (2009).   DOI   ScienceOn
22 S. Komazaki, T. Kato, Y. Kohno, and H. Tanigawa, Mat. Sci. and Eng. A 510, 229 (2009).   DOI   ScienceOn